Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.
Bioinformatics. 2013 Jul 15;29(14):1758-67. doi: 10.1093/bioinformatics/btt242. Epub 2013 Apr 29.
A basic issue for translational genomics is to model gene interaction via gene regulatory networks (GRNs) and thereby provide an informatics environment to study the effects of intervention (say, via drugs) and to derive effective intervention strategies. Taking the view that the phenotype is characterized by the long-run behavior (steady-state distribution) of the network, we desire interventions to optimally move the probability mass from undesirable to desirable states Heretofore, two external control approaches have been taken to shift the steady-state mass of a GRN: (i) use a user-defined cost function for which desirable shift of the steady-state mass is a by-product and (ii) use heuristics to design a greedy algorithm. Neither approach provides an optimal control policy relative to long-run behavior.
We use a linear programming approach to optimally shift the steady-state mass from undesirable to desirable states, i.e. optimization is directly based on the amount of shift and therefore must outperform previously proposed methods. Moreover, the same basic linear programming structure is used for both unconstrained and constrained optimization, where in the latter case, constraints on the optimization limit the amount of mass that may be shifted to 'ambiguous' states, these being states that are not directly undesirable relative to the pathology of interest but which bear some perceived risk. We apply the method to probabilistic Boolean networks, but the theory applies to any Markovian GRN.
Supplementary materials, including the simulation results, MATLAB source code and description of suboptimal methods are available at http://gsp.tamu.edu/Publications/supplementary/yousefi13b.
Supplementary data are available at Bioinformatics online.
转化基因组学的一个基本问题是通过基因调控网络(GRNs)来模拟基因相互作用,从而提供一个信息学环境来研究干预(例如通过药物)的效果,并得出有效的干预策略。我们认为表型的特征是网络的长期行为(稳态分布),我们希望干预措施能够将概率质量从不理想状态最优地转移到理想状态。迄今为止,已经采取了两种外部控制方法来改变 GRN 的稳态质量:(i)使用用户定义的成本函数,其中理想的稳态质量转移是副产品;(ii)使用启发式方法设计贪婪算法。这两种方法都不能相对于长期行为提供最优控制策略。
我们使用线性规划方法来最优地将稳态质量从不理想状态转移到理想状态,即优化直接基于转移量,因此必须优于以前提出的方法。此外,相同的基本线性规划结构用于无约束和约束优化,在后一种情况下,优化限制了可能转移到“模糊”状态的质量量,这些状态相对于感兴趣的病理学不是直接不理想的,但存在一定的风险感知。我们将该方法应用于概率布尔网络,但该理论适用于任何马尔可夫 GRN。
补充材料,包括模拟结果、MATLAB 源代码和次优方法的描述,可在 http://gsp.tamu.edu/Publications/supplementary/yousefi13b 获得。
补充数据可在生物信息学在线获得。