Suppr超能文献

建模细胞对疗法的防御反应:调控网络的平衡干预。

Modeling Defensive Response of Cells to Therapies: Equilibrium Interventions for Regulatory Networks.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1322-1334. doi: 10.1109/TCBB.2024.3383814. Epub 2024 Oct 9.

Abstract

A major objective in genomics is to design interventions that can shift undesirable behaviors of such systems (i.e., those associated with cancers) into desirable ones. Several intervention policies have been developed in recent years, including dynamic and structural interventions. These techniques aim at making targeted changes to cell dynamics upon intervention, without considering the cell's defensive mechanisms to interventions. This simplified assumption often leads to early and short-term success of interventions, followed by partial or full recurrence of diseases. This is due to the fact that cells often have dynamic and intelligent responses to interventions through internal stimuli. This paper models gene regulatory networks (GRNs) using the Boolean network with perturbation. The dynamic and adaptive battle between intervention and the cell is modeled as a two-player zero-sum game, where intervention and the cell fight against each other with fully opposite objectives. An optimal intervention policy is obtained as a Nash equilibrium solution, through which the intervention is stochastic, ensuring the optimal solution to all potential cell responses. We analytically analyze the superiority of the proposed intervention policy against existing intervention techniques. Comprehensive numerical experiments using the p53-MDM2 negative feedback loop regulatory network and melanoma network demonstrate the high performance of the proposed method.

摘要

基因组学的一个主要目标是设计可以改变这些系统(即与癌症相关的系统)不良行为的干预措施,使其变为理想的行为。近年来已经开发了几种干预策略,包括动态和结构干预。这些技术旨在在干预时对细胞动力学进行有针对性的改变,而不考虑细胞对干预的防御机制。这种简化的假设通常会导致干预的早期和短期成功,随后疾病会部分或完全复发。这是因为细胞通常会通过内部刺激对干预做出动态和智能的反应。本文使用带有摄动的布尔网络对基因调控网络(GRN)进行建模。干预和细胞之间的动态和自适应战斗被建模为一个二玩家零和博弈,其中干预和细胞以完全相反的目标相互对抗。通过纳什均衡解获得最优干预策略,通过该策略使干预具有随机性,从而确保针对所有潜在细胞反应的最优解。我们从分析上分析了所提出的干预策略相对于现有干预技术的优越性。使用 p53-MDM2 负反馈回路调控网络和黑色素瘤网络进行的综合数值实验证明了该方法的高性能。

相似文献

1
Modeling Defensive Response of Cells to Therapies: Equilibrium Interventions for Regulatory Networks.建模细胞对疗法的防御反应:调控网络的平衡干预。
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep-Oct;21(5):1322-1334. doi: 10.1109/TCBB.2024.3383814. Epub 2024 Oct 9.
3
Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning.使用贝叶斯逆强化学习控制基因调控网络。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jul-Aug;16(4):1250-1261. doi: 10.1109/TCBB.2018.2830357. Epub 2018 Apr 26.
8
Splitting strategy for simulating genetic regulatory networks.用于模拟基因调控网络的分裂策略。
Comput Math Methods Med. 2014;2014:683235. doi: 10.1155/2014/683235. Epub 2014 Feb 2.
9
Stochastic multiple-valued gene networks.随机多值基因网络。
IEEE Trans Biomed Circuits Syst. 2014 Feb;8(1):42-53. doi: 10.1109/TBCAS.2013.2291398.

本文引用的文献

1
Reinforcement Learning Data-Acquiring for Causal Inference of Regulatory Networks.用于调控网络因果推断的强化学习数据获取
Proc Am Control Conf. 2023 May-Jun;2023:3957-3964. doi: 10.23919/acc55779.2023.10155867. Epub 2023 Jul 3.
3
Optimal Recursive Expert-Enabled Inference in Regulatory Networks.调控网络中基于最优递归专家的推理
IEEE Control Syst Lett. 2023;7:1027-1032. doi: 10.1109/lcsys.2022.3229054. Epub 2022 Dec 14.
4
Inference of regulatory networks through temporally sparse data.通过时间上稀疏的数据推断调控网络。
Front Control Eng. 2022;3. doi: 10.3389/fcteg.2022.1017256. Epub 2022 Dec 13.
8
A review on the computational approaches for gene regulatory network construction.基因调控网络构建的计算方法综述。
Comput Biol Med. 2014 May;48:55-65. doi: 10.1016/j.compbiomed.2014.02.011. Epub 2014 Feb 24.
9
Intervention in gene regulatory networks with maximal phenotype alteration.基因调控网络的最大表型改变干预。
Bioinformatics. 2013 Jul 15;29(14):1758-67. doi: 10.1093/bioinformatics/btt242. Epub 2013 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验