Instituto de Bioquímica Vegetal y Fotosíntesis cicCartuja, Universidad de Sevilla - C.S.I.C. Avda. Américo Vespucio, 49, 41092 Sevilla (Spain), Fax: (+34) 954460065.
Chemphyschem. 2013 Sep 16;14(13):3095-102. doi: 10.1002/cphc.201300210. Epub 2013 Apr 29.
Tyrosine nitration is a common post-translational modification affecting protein structure and function. It is based on the addition of a -NO2 group at the ortho position of the phenolic hydroxyl group of tyrosine to yield 3-nitrotyrosine (3-NTyr). Understanding how tyrosine nitration affects the structure and functionality of proteins is of considerable interest, as it is associated with pathogenesis in diseases related to oxidative stress in all living organisms. There are several methods to nitrate tyrosine residues in native proteins. Among them, nitration by the chemical agent peroxynitrite stands out for its biological relevance. Recently, a genetically evolved suppressor tRNA has been developed to provide in vivo incorporation of 3-NTyr into proteins. In this minireview, we discuss the advantages and limitations of these chemical and biological methods and propose a non-damaging method to analyze the configuration and dynamics of nitrotyrosine residues in native proteins by NMR spectroscopy.
酪氨酸硝化是一种常见的翻译后修饰,影响蛋白质的结构和功能。它基于在酪氨酸的酚羟基的邻位添加一个 -NO2 基团,生成 3-硝基酪氨酸(3-NTyr)。了解酪氨酸硝化如何影响蛋白质的结构和功能具有相当大的意义,因为它与所有生物体中与氧化应激相关的疾病的发病机制有关。有几种方法可以使天然蛋白质中的酪氨酸残基硝化。其中,化学试剂过氧亚硝酸盐引起的硝化因其生物学相关性而引人注目。最近,开发了一种遗传进化的抑制 tRNA,以提供 3-NTyr 在体内掺入蛋白质中。在这篇综述中,我们讨论了这些化学和生物学方法的优缺点,并提出了一种非破坏性的方法,通过 NMR 光谱分析天然蛋白质中硝基酪氨酸残基的构象和动态。