Chemical Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.
J Am Chem Soc. 2013 May 29;135(21):8047-56. doi: 10.1021/ja402597g. Epub 2013 May 15.
Electrical energy storage for transportation has gone beyond the limit of converntional lithium ion batteries currently. New material or new battery system development is an alternative approach to achieve the goal of new high-energy storage system with energy densities 5 times or more greater. A series of SeSx-carbon (x = 0-7) composite materials has been prepared and evaluated as the positive electrodes in secondary lithium cells with ether-based electrolyte. In situ synchrotron high-energy X-ray diffraction was utilized to investigate the crystalline phase transition during cell cycling. Complementary, in situ Se K-edge X-ray absorption near edge structure analysis was used to track the evolution of the Se valence state for both crystalline and noncrystalline phases, including amorphous and electrolyte-dissolved phases in the (de)lithiation process. On the basis of these results, a mechanism for the (de)lithiation process is proposed, where Se is reduced to the polyselenides, Li2Sen (n ≥ 4), Li2Se2, and Li2Se sequentially during the lithiation and Li2Se is oxidized to Se through Li2Sen (n ≥ 4) during the delithiation. In addition, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy demonstrated the reversibility of the Li/Se system in ether-based electrolyte and the presence of side products in the carbonate-based electrolytes. For Li/SeS2 and Li/SeS7 cells, Li2Se and Li2S are the discharged products with the presence of Se only as the crystalline phase in the end of charge.
用于交通的电能存储已经超出了传统锂离子电池的极限。新材料或新电池系统的开发是实现具有 5 倍或更高能量密度的新型高能量存储系统的目标的替代方法。已经制备了一系列 SeSx-碳(x = 0-7)复合材料,并将其作为具有醚基电解质的二次锂电池的正极进行了评估。利用原位同步辐射高能 X 射线衍射研究了电池循环过程中的晶体相转变。此外,还使用原位 Se K 边 X 射线吸收近边结构分析来跟踪 Se 价态在结晶相和非晶相中的演变,包括无定形相和电解质溶解相在(脱)锂过程中的演变。基于这些结果,提出了(脱)锂过程的机理,其中 Se 在锂化过程中依次还原为多硒化物 Li2Sen(n ≥ 4)、Li2Se2 和 Li2Se,而在脱锂过程中 Li2Se 通过 Li2Sen(n ≥ 4)氧化为 Se。此外,X 射线光电子能谱和电化学阻抗谱表明 Li/Se 体系在醚基电解质中的可逆性以及碳酸盐基电解质中存在副产物。对于 Li/SeS2 和 Li/SeS7 电池,Li2Se 和 Li2S 是放电产物,在充电结束时仅存在 Se 的结晶相。