Davee Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA.
J Neurosci. 2013 May 1;33(18):7890-904. doi: 10.1523/JNEUROSCI.2787-12.2013.
Understanding mechanisms that lead to selective motor neuron degeneration requires visualization and cellular identification of vulnerable neurons. Here we report generation and characterization of UCHL1-eGFP and hSOD1(G93A)-UeGFP mice, novel reporter lines for cortical and spinal motor neurons. Corticospinal motor neurons (CSMN) and a subset of spinal motor neurons (SMN) are genetically labeled in UCHL1-eGFP mice, which express eGFP under the UCHL1 promoter. eGFP expression is stable and continues through P800 in vivo. Retrograde labeling, molecular marker expression, electrophysiological analysis, and cortical circuit mapping confirmed CSMN identity of eGFP(+) neurons in the motor cortex. Anatomy, molecular marker expression, and electrophysiological analysis revealed that the eGFP expression is restricted to a subset of small-size SMN that are slow-twitch α and γ motor neurons. Crossbreeding of UCHL1-eGFP and hSOD1(G93A) lines generated hSOD1(G93A)-UeGFP mice, which displayed the disease phenotype observed in a hSOD1(G93A) mouse model of ALS. eGFP(+) SMN showed resistance to degeneration in hSOD1(G93A)-UeGFP mice, and their slow-twitch α and γ motor neuron identity was confirmed. In contrast, eGFP(+) neurons in the motor cortex of hSOD1(G93A)-UeGFP mice recapitulated previously reported progressive CSMN loss and apical dendrite degeneration. Our findings using these two novel reporter lines revealed accumulation of autophagosomes along the apical dendrites of vulnerable CSMN at P60, early symptomatic stage, suggesting autophagy as a potential intrinsic mechanism for CSMN apical dendrite degeneration.
了解导致选择性运动神经元变性的机制需要对易损神经元进行可视化和细胞鉴定。在这里,我们报告了 UCHL1-eGFP 和 hSOD1(G93A)-UeGFP 小鼠的产生和特征,这是新型皮质和脊髓运动神经元报告系。UCHL1-eGFP 小鼠中的皮质脊髓运动神经元(CSMN)和一部分脊髓运动神经元(SMN)在 UCHL1 启动子的控制下遗传标记为 eGFP。eGFP 表达稳定,并在体内持续到 P800。逆行标记、分子标记物表达、电生理分析和皮质回路映射证实了运动皮层中 eGFP(+)神经元的 CSMN 身份。解剖学、分子标记物表达和电生理分析表明,eGFP 表达仅限于一小部分慢肌纤维 α 和 γ 运动神经元的 SMN。UCHL1-eGFP 和 hSOD1(G93A)系的杂交产生了 hSOD1(G93A)-UeGFP 小鼠,其表现出 ALS 中 hSOD1(G93A)小鼠模型观察到的疾病表型。hSOD1(G93A)-UeGFP 小鼠中的 eGFP(+)SMN 对变性具有抗性,并且证实了其慢肌纤维 α 和 γ 运动神经元的身份。相比之下,hSOD1(G93A)-UeGFP 小鼠运动皮层中的 eGFP(+)神经元再现了先前报道的进行性 CSMN 丧失和顶树突变性。我们使用这两种新型报告系的发现表明,在 P60(早期症状阶段)易损 CSMN 的顶树突上积累了自噬体,提示自噬可能是 CSMN 顶树突变性的潜在内在机制。