Suppr超能文献

合理整合句子解释中的嘈杂证据和先验语义期望。

Rational integration of noisy evidence and prior semantic expectations in sentence interpretation.

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 May 14;110(20):8051-6. doi: 10.1073/pnas.1216438110. Epub 2013 May 1.

Abstract

Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be "well designed"--in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian "size principle"; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel.

摘要

句子处理理论通常假设,我们的语言处理机制的输入是一个无错误的单词序列。然而,这种假设过于简单化了,因为在典型的语言使用中存在噪声(例如,由于环境嘈杂、产生者错误或感知者错误)。因此,一个完整的人类句子理解理论需要解释人类如何在有缺陷的输入下理解语言。事实上,像许多认知系统一样,语言处理机制甚至可能是“精心设计的”——在这种情况下,是为了从嘈杂的话语中恢复意图意义的任务而设计的。特别是,理解机制可能对理想化的统计理解者会敏感的信息类型敏感。在这里,我们在句子理解任务中评估了这样一个理性(贝叶斯)噪声通道语言理解者的四个预测:(i)语义线索应该将句子解释推向合理的含义,尤其是如果更合理的含义的措辞与观察到的话语在编辑数量方面相近;(ii)由于贝叶斯的“大小原则”,这个过程应该对插入和删除不对称地处理;这样的句子非字面解释应该(iii)随着感知到的交际情境的噪声率增加而增加,并且(iv)如果语义异常的含义更有可能被传达,则减少。这些预测得到了证实,强烈表明人类语言依赖于通过噪声信道进行理性的统计推断。

相似文献

3
The effect of context on noisy-channel sentence comprehension.语境对噪声信道句子理解的影响。
Cognition. 2023 Sep;238:105503. doi: 10.1016/j.cognition.2023.105503. Epub 2023 Jun 9.
6
A noisy-channel approach to depth-charge illusions.一种用于深度电荷错觉的噪声信道方法。
Cognition. 2023 Mar;232:105346. doi: 10.1016/j.cognition.2022.105346. Epub 2022 Dec 10.
9
Comprehenders model the nature of noise in the environment.理解者对环境中的噪声性质进行建模。
Cognition. 2018 Dec;181:141-150. doi: 10.1016/j.cognition.2018.08.018. Epub 2018 Sep 6.

引用本文的文献

3
Interference of Implicit Causality in Relative Clause Processing.关系从句加工中隐性因果关系的干扰
Open Mind (Camb). 2025 Mar 3;9:364-400. doi: 10.1162/opmi_a_00193. eCollection 2025.
5
Number Attraction in Pronoun Production.代词生成中的数字吸引。
Open Mind (Camb). 2024 Nov 1;8:1247-1290. doi: 10.1162/opmi_a_00167. eCollection 2024.
8
Letters, Words, Sentences, and Reading.字母、单词、句子与阅读。
J Cogn. 2024 Aug 27;7(1):66. doi: 10.5334/joc.396. eCollection 2024.

本文引用的文献

2
Altering context speech rate can cause words to appear or disappear.改变语境中的语速会导致单词的出现或消失。
Psychol Sci. 2010 Nov;21(11):1664-70. doi: 10.1177/0956797610384743. Epub 2010 Sep 28.
4
Perception of speech reflects optimal use of probabilistic speech cues.言语感知反映了概率性言语线索的最佳利用。
Cognition. 2008 Sep;108(3):804-9. doi: 10.1016/j.cognition.2008.04.004. Epub 2008 Jun 25.
5
Expectation-based syntactic comprehension.基于期望的句法理解。
Cognition. 2008 Mar;106(3):1126-77. doi: 10.1016/j.cognition.2007.05.006. Epub 2007 Jul 30.
6
Word learning as Bayesian inference.作为贝叶斯推理的词汇学习
Psychol Rev. 2007 Apr;114(2):245-72. doi: 10.1037/0033-295X.114.2.245.
7
Neural mechanisms of language comprehension: challenges to syntax.语言理解的神经机制:句法面临的挑战
Brain Res. 2007 May 18;1146:23-49. doi: 10.1016/j.brainres.2006.12.063. Epub 2006 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验