Suppr超能文献

通过密度估计学习多感觉整合和坐标变换。

Learning multisensory integration and coordinate transformation via density estimation.

机构信息

Department of Physiology and the Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California, USA.

出版信息

PLoS Comput Biol. 2013 Apr;9(4):e1003035. doi: 10.1371/journal.pcbi.1003035. Epub 2013 Apr 18.

Abstract

Sensory processing in the brain includes three key operations: multisensory integration-the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations-the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned-but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations.

摘要

大脑中的感觉处理包括三个关键操作

多感觉整合——将线索组合成对共同潜在刺激的单一估计的任务;坐标变换——通过对中间变量(例如,注视位置)的知识来改变刺激的参考框架(例如,视网膜到身体中心);以及先验信息的纳入。统计上最优的感觉处理要求这些操作中的每一个都保持对刺激的正确后验分布。这些最优性的要素在人类和其他动物的许多行为背景中得到了证明,这表明神经计算确实是最优的。感觉模态之间的关系是复杂和可塑的,这进一步表明这些计算是学习的——但如何学习?我们通过将这些映射的获取视为密度估计的情况来提供一个有原则的答案,这是机器学习和统计学中一个研究充分的问题,其中观察到的数据的分布是根据一组固定参数和一组潜在变量来建模的。在我们的案例中,观察到的数据是单感觉——群体活动,固定参数是突触连接,而潜在变量是多感觉——群体活动。具体来说,我们使用具有生物合理性的对比散度规则训练受限玻尔兹曼机,以学习以前在单一方法下未证明的一系列神经计算:最佳整合;先验编码;线索的分层整合;何时不整合的学习;以及坐标变换。该模型对多感觉表示的性质做出了可测试的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d8/3630212/65ece9a51241/pcbi.1003035.g001.jpg

相似文献

1
Learning multisensory integration and coordinate transformation via density estimation.
PLoS Comput Biol. 2013 Apr;9(4):e1003035. doi: 10.1371/journal.pcbi.1003035. Epub 2013 Apr 18.
3
Evaluating the operations underlying multisensory integration in the cat superior colliculus.
J Neurosci. 2005 Jul 13;25(28):6499-508. doi: 10.1523/JNEUROSCI.5095-04.2005.
4
Selective Enhancement of Object Representations through Multisensory Integration.
J Neurosci. 2020 Jul 15;40(29):5604-5615. doi: 10.1523/JNEUROSCI.2139-19.2020. Epub 2020 Jun 4.
6
A rational analysis of the acquisition of multisensory representations.
Cogn Sci. 2012 Mar;36(2):305-32. doi: 10.1111/j.1551-6709.2011.01216.x. Epub 2011 Dec 5.
7
The relationship between multisensory associative learning and multisensory integration.
Neuropsychologia. 2022 Sep 9;174:108336. doi: 10.1016/j.neuropsychologia.2022.108336. Epub 2022 Jul 22.
8
Decentralized Multisensory Information Integration in Neural Systems.
J Neurosci. 2016 Jan 13;36(2):532-47. doi: 10.1523/JNEUROSCI.0578-15.2016.
9
Effect of eye position during human visual-vestibular integration of heading perception.
J Neurophysiol. 2017 Sep 1;118(3):1609-1621. doi: 10.1152/jn.00037.2017. Epub 2017 Jun 14.
10
Integrating Visual Information into the Auditory Cortex Promotes Sound Discrimination through Choice-Related Multisensory Integration.
J Neurosci. 2022 Nov 9;42(45):8556-8568. doi: 10.1523/JNEUROSCI.0793-22.2022. Epub 2022 Sep 23.

引用本文的文献

1
Computational models of peripersonal space representation.
Phys Life Rev. 2025 Sep;54:128-140. doi: 10.1016/j.plrev.2025.07.002. Epub 2025 Jul 3.
2
Decentralized Neural Circuits of Multisensory Information Integration in the Brain.
Adv Exp Med Biol. 2024;1437:1-21. doi: 10.1007/978-981-99-7611-9_1.
3
A normative model of peripersonal space encoding as performing impact prediction.
PLoS Comput Biol. 2022 Sep 14;18(9):e1010464. doi: 10.1371/journal.pcbi.1010464. eCollection 2022 Sep.
4
Building and Understanding the Minimal Self.
Front Psychol. 2021 Nov 26;12:716982. doi: 10.3389/fpsyg.2021.716982. eCollection 2021.
5
Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control.
Neurosci Biobehav Rev. 2021 Sep;128:487-510. doi: 10.1016/j.neubiorev.2021.06.042. Epub 2021 Jun 30.
7
Feedback Modulates Audio-Visual Spatial Recalibration.
Front Integr Neurosci. 2020 Jan 17;13:74. doi: 10.3389/fnint.2019.00074. eCollection 2019.

本文引用的文献

1
Coding of the reach vector in parietal area 5d.
Neuron. 2012 Jul 26;75(2):342-51. doi: 10.1016/j.neuron.2012.03.041.
2
New method for parameter estimation in probabilistic models: minimum probability flow.
Phys Rev Lett. 2011 Nov 25;107(22):220601. doi: 10.1103/PhysRevLett.107.220601. Epub 2011 Nov 21.
3
A rational analysis of the acquisition of multisensory representations.
Cogn Sci. 2012 Mar;36(2):305-32. doi: 10.1111/j.1551-6709.2011.01216.x. Epub 2011 Dec 5.
4
Neural correlates of reliability-based cue weighting during multisensory integration.
Nat Neurosci. 2011 Nov 20;15(1):146-54. doi: 10.1038/nn.2983.
6
How each movement changes the next: an experimental and theoretical study of fast adaptive priors in reaching.
J Neurosci. 2011 Jul 6;31(27):10050-9. doi: 10.1523/JNEUROSCI.6525-10.2011.
8
Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7951-6. doi: 10.1073/pnas.0913209107. Epub 2010 Apr 7.
9
Sensory transformations and the use of multiple reference frames for reach planning.
Nat Neurosci. 2009 Aug;12(8):1056-61. doi: 10.1038/nn.2357. Epub 2009 Jul 13.
10
Natural image coding in V1: how much use is orientation selectivity?
PLoS Comput Biol. 2009 Apr;5(4):e1000336. doi: 10.1371/journal.pcbi.1000336. Epub 2009 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验