Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, CA, USA.
Phys Med Biol. 2013 Jun 7;58(11):3551-62. doi: 10.1088/0031-9155/58/11/3551. Epub 2013 May 2.
In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully.
在本文中,我们建立了一种新型成像技术的数学框架,即光磁共振成像(PMI)。PMI 利用激光照射生物组织,并使用磁共振成像(MRI)测量诱导的温度变化。PMI 克服了传统光学成像的局限性,允许以 MRI 空间分辨率对光学对比度进行成像。本文提出了一种基于有限元的算法,该算法采用迭代方法进行 PMI 的图像重建。研究了 PMI 在各种包含物大小、深度和吸收值下的定量准确性。然后,对传统的漫射光学断层扫描(DOT)和 PMI 进行了比较,说明了 PMI 的优越性能。本文提供了一个示例,显示了在一个 25 毫米直径的圆形几何介质中,两个 2 毫米直径的包含物分别位于 4.5 毫米深处,它们被重建为一个具有 DOT 的 6 毫米直径的单个物体。然而,这些两个物体不仅可以通过 PMI 有效分辨,而且它们的真实浓度也可以成功恢复。