Suppr超能文献

无边界调强放射治疗计划的概率目标函数。

Probabilistic objective functions for margin-less IMRT planning.

机构信息

Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

出版信息

Phys Med Biol. 2013 Jun 7;58(11):3563-80. doi: 10.1088/0031-9155/58/11/3563. Epub 2013 May 2.

Abstract

We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.

摘要

我们提出了一种使用商业治疗计划系统中的自定义软件插件来实现调强放射治疗概率性治疗计划的方法。我们的方法通过在目标函数评估时直接包含几何不确定性的效果来避免通过定义安全裕度来避免。因为所得剂量分布的形状隐含地定义了计划的稳健性,所以优化器比基于裕度的方法具有更大的灵活性。我们预计这种附加的灵活性有助于在靶区覆盖和周围健康组织的剂量降低之间自动取得更好的平衡,特别是在计划靶区体积与危险器官重叠的情况下。选择前列腺癌治疗计划来开发我们的方法,包括一种新的纳入旋转不确定性的技术。基于人群统计学,根据基于标记的 IGRT 校正策略,独立模拟平移和旋转。通过首先模糊然后相对于临床靶区移位剂量分布来合并随机和系统误差的影响。为了简单和效率,假设剂量移位不变性和刚体近似。使用我们的概率目标函数重新计划了三个前列腺病例。为了比较临床和概率计划,使用了一种评估工具,该工具使用蒙特卡罗方法明确地包含了几何不确定性。新计划在预期靶区覆盖和直肠壁保护方面与原始临床计划相似或更好。计划优化时间仅比原始临床系统高约两倍。总之,我们开发了一种实用的规划工具,实现了具有可接受规划时间的无裕度概率性治疗计划,实现了第一个可行的临床实施方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验