Suppr超能文献

在晚期糖尿病肾病模型中观察到结构和功能损伤的逆转。

Reversibility of structural and functional damage in a model of advanced diabetic nephropathy.

机构信息

Department of Pathology, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Am Soc Nephrol. 2013 Jun;24(7):1088-102. doi: 10.1681/ASN.2012050445. Epub 2013 May 2.

Abstract

The reversibility of diabetic nephropathy remains controversial. Here, we tested whether replacing leptin could reverse the advanced diabetic nephropathy modeled by the leptin-deficient BTBR ob/ob mouse. Leptin replacement, but not inhibition of the renin-angiotensin-aldosterone system (RAAS), resulted in near-complete reversal of both structural (mesangial matrix expansion, mesangiolysis, basement membrane thickening, podocyte loss) and functional (proteinuria, accumulation of reactive oxygen species) measures of advanced diabetic nephropathy. Immunohistochemical labeling with the podocyte markers Wilms tumor 1 and p57 identified parietal epithelial cells as a possible source of regenerating podocytes. Thus, the leptin-deficient BTBR ob/ob mouse provides a model of advanced but reversible diabetic nephropathy for further study. These results also suggest that restoration of lost podocytes is possible but is not induced by RAAS inhibition, possibly explaining the limited efficacy of RAAS inhibitors in promoting repair of diabetic nephropathy.

摘要

糖尿病肾病的可逆性仍存在争议。在这里,我们测试了补充瘦素是否可以逆转由瘦素缺乏的 BTBR ob/ob 小鼠所建立的晚期糖尿病肾病模型。瘦素替代治疗,而不是肾素-血管紧张素-醛固酮系统(RAAS)的抑制,导致晚期糖尿病肾病的结构(肾小球系膜基质扩张、肾小球溶解、基底膜增厚、足细胞丢失)和功能(蛋白尿、活性氧物质积累)指标几乎完全逆转。用足细胞标志物 Wilms 肿瘤 1 和 p57 进行免疫组织化学标记,将壁细胞确定为再生足细胞的可能来源。因此,瘦素缺乏的 BTBR ob/ob 小鼠为进一步研究提供了一种晚期但可逆转的糖尿病肾病模型。这些结果还表明,丢失的足细胞的恢复是可能的,但不受 RAAS 抑制的诱导,这可能解释了 RAAS 抑制剂在促进糖尿病肾病修复方面的疗效有限。

相似文献

1
Reversibility of structural and functional damage in a model of advanced diabetic nephropathy.
J Am Soc Nephrol. 2013 Jun;24(7):1088-102. doi: 10.1681/ASN.2012050445. Epub 2013 May 2.
2
Beneficial effect on podocyte number in experimental diabetic nephropathy resulting from combined atrasentan and RAAS inhibition therapy.
Am J Physiol Renal Physiol. 2020 May 1;318(5):F1295-F1305. doi: 10.1152/ajprenal.00498.2019. Epub 2020 Apr 6.
3
Regression of diabetic nephropathy by treatment with empagliflozin in BTBR ob/ob mice.
Nephrol Dial Transplant. 2022 Apr 25;37(5):847-859. doi: 10.1093/ndt/gfab330.
4
Reversal of hypertriglyceridemia in diabetic BTBR ob/ob mice does not prevent nephropathy.
Lab Invest. 2021 Jul;101(7):935-941. doi: 10.1038/s41374-021-00592-8. Epub 2021 Apr 28.
5
Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
Diabetologia. 2016 Feb;59(2):379-89. doi: 10.1007/s00125-015-3796-0. Epub 2015 Oct 28.
6
The podocyte: a potential therapeutic target in diabetic nephropathy?
Curr Pharm Des. 2007;13(26):2713-20. doi: 10.2174/138161207781662957.
7
BTBR Ob/Ob mutant mice model progressive diabetic nephropathy.
J Am Soc Nephrol. 2010 Sep;21(9):1533-42. doi: 10.1681/ASN.2009121290. Epub 2010 Jul 15.
8
Mouse models of diabetic nephropathy.
Curr Opin Nephrol Hypertens. 2011 May;20(3):278-84. doi: 10.1097/MNH.0b013e3283451901.

引用本文的文献

3
Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy.
Genes Genomics. 2024 May;46(5):621-635. doi: 10.1007/s13258-024-01504-y. Epub 2024 Mar 27.
4
Podocytes from hypertensive and obese mice acquire an inflammatory, senescent, and aged phenotype.
Am J Physiol Renal Physiol. 2024 Apr 1;326(4):F644-F660. doi: 10.1152/ajprenal.00417.2023. Epub 2024 Feb 29.
5
Genetic Analysis of Obesity-Induced Diabetic Nephropathy in BTBR Mice.
Diabetes. 2024 Feb 1;73(2):312-317. doi: 10.2337/db23-0444.
7
Optimizing diabetic kidney disease animal models: Insights from a meta-analytic approach.
Animal Model Exp Med. 2023 Oct;6(5):433-451. doi: 10.1002/ame2.12350. Epub 2023 Sep 18.
8
Rodent models to study type 1 and type 2 diabetes induced human diabetic nephropathy.
Mol Biol Rep. 2023 Sep;50(9):7759-7782. doi: 10.1007/s11033-023-08621-z. Epub 2023 Jul 17.
9
What the BTBR/J mouse has taught us about diabetes and diabetic complications.
iScience. 2023 Jun 7;26(7):107036. doi: 10.1016/j.isci.2023.107036. eCollection 2023 Jul 21.
10
Expression of leptin receptor in renal tubules is sparse but implicated in leptin-dependent kidney gene expression and function.
Am J Physiol Renal Physiol. 2023 Jun 1;324(6):F544-F557. doi: 10.1152/ajprenal.00279.2022. Epub 2023 Apr 27.

本文引用的文献

1
Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes.
Am J Physiol Renal Physiol. 2012 May 1;302(9):F1161-71. doi: 10.1152/ajprenal.00614.2011. Epub 2012 Jan 18.
2
Temporal trends in the prevalence of diabetic kidney disease in the United States.
JAMA. 2011 Jun 22;305(24):2532-9. doi: 10.1001/jama.2011.861.
3
Pathology of human diabetic nephropathy.
Contrib Nephrol. 2011;170:36-47. doi: 10.1159/000324942. Epub 2011 Jun 9.
4
Using stereologic techniques for podocyte counting in the mouse: shifting the paradigm.
Am J Nephrol. 2011;33 Suppl 1(Suppl 1):1-7. doi: 10.1159/000327564. Epub 2011 Jun 10.
5
Mouse models of diabetic nephropathy.
Curr Opin Nephrol Hypertens. 2011 May;20(3):278-84. doi: 10.1097/MNH.0b013e3283451901.
6
Podocyte number in the maturing rat kidney.
Am J Nephrol. 2011;33(1):91-6. doi: 10.1159/000322701. Epub 2010 Dec 22.
7
Oxidative stress and diabetic complications.
Circ Res. 2010 Oct 29;107(9):1058-70. doi: 10.1161/CIRCRESAHA.110.223545.
8
Glomerular epithelial stem cells: the good, the bad, and the ugly.
J Am Soc Nephrol. 2010 Oct;21(10):1612-9. doi: 10.1681/ASN.2010010048. Epub 2010 Sep 9.
9
BTBR Ob/Ob mutant mice model progressive diabetic nephropathy.
J Am Soc Nephrol. 2010 Sep;21(9):1533-42. doi: 10.1681/ASN.2009121290. Epub 2010 Jul 15.
10
New pharmacological treatments for improving renal outcomes in diabetes.
Nat Rev Nephrol. 2010 Jun;6(6):371-80. doi: 10.1038/nrneph.2010.57. Epub 2010 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验