Jha Jay C, Thallas-Bonke Vicki, Banal Claudine, Gray Stephen P, Chow Bryna S M, Ramm Georg, Quaggin Susan E, Cooper Mark E, Schmidt Harald H H W, Jandeleit-Dahm Karin A
Diabetes Complications Division, Baker IDI Heart & Diabetes Research Institute, PO Box 6492, St Kilda Rd, Melbourne, VIC, 8008, Australia.
Department of Medicine, Monash University, Melbourne, VIC, Australia.
Diabetologia. 2016 Feb;59(2):379-89. doi: 10.1007/s00125-015-3796-0. Epub 2015 Oct 28.
AIMS/HYPOTHESIS: Changes in podocyte morphology and function are associated with albuminuria and progression of diabetic nephropathy. NADPH oxidase 4 (NOX4) is the main source of reactive oxygen species (ROS) in the kidney and Nox4 is upregulated in podocytes in response to high glucose. We assessed the role of NOX4-derived ROS in podocytes in vivo in a model of diabetic nephropathy using a podocyte-specific NOX4-deficient mouse, with a major focus on the development of albuminuria and ultra-glomerular structural damage.
Streptozotocin-induced diabetes-associated changes in renal structure and function were studied in male floxedNox4 and podocyte-specific, NOX4 knockout (podNox4KO) mice. We assessed albuminuria, glomerular extracellular matrix accumulation and glomerulosclerosis, and markers of ROS and inflammation, as well as glomerular basement membrane thickness, effacement of podocytes and expression of the podocyte-specific protein nephrin.
Podocyte-specific Nox4 deletion in streptozotocin-induced diabetic mice attenuated albuminuria in association with reduced vascular endothelial growth factor (VEGF) expression and prevention of the diabetes-induced reduction in nephrin expression. In addition, podocyte-specific Nox4 deletion reduced glomerular accumulation of collagen IV and fibronectin, glomerulosclerosis and mesangial expansion, as well as glomerular basement membrane thickness. Furthermore, diabetes-induced increases in renal ROS, glomerular monocyte chemoattractant protein-1 (MCP-1) and protein kinase C alpha (PKC-α) were attenuated in podocyte-specific NOX4-deficient mice.
CONCLUSIONS/INTERPRETATION: Collectively, this study shows the deleterious effect of Nox4 expression in podocytes by promoting podocytopathy in association with albuminuria and extracellular matrix accumulation in experimental diabetes, emphasising the role of NOX4 as a target for new renoprotective agents.
目的/假设:足细胞形态和功能的改变与蛋白尿及糖尿病肾病的进展相关。NADPH氧化酶4(NOX4)是肾脏中活性氧(ROS)的主要来源,在高糖刺激下足细胞中的Nox4表达上调。我们使用足细胞特异性NOX4缺陷小鼠,在糖尿病肾病模型中评估了足细胞中NOX4衍生的ROS在体内的作用,主要关注蛋白尿的发生及肾小球结构损伤。
在雄性floxedNox4小鼠和足细胞特异性NOX4基因敲除(podNox4KO)小鼠中,研究链脲佐菌素诱导的糖尿病相关的肾脏结构和功能变化。我们评估了蛋白尿、肾小球细胞外基质积聚和肾小球硬化,以及ROS和炎症标志物,还有肾小球基底膜厚度、足细胞足突消失和足细胞特异性蛋白nephrin的表达。
在链脲佐菌素诱导的糖尿病小鼠中,足细胞特异性Nox4缺失可减轻蛋白尿,同时血管内皮生长因子(VEGF)表达降低,并防止糖尿病诱导的nephrin表达减少。此外,足细胞特异性Nox4缺失减少了IV型胶原和纤连蛋白在肾小球的积聚、肾小球硬化和系膜扩张,以及肾小球基底膜厚度。此外,在足细胞特异性NOX4缺陷小鼠中,糖尿病诱导的肾脏ROS、肾小球单核细胞趋化蛋白-1(MCP-1)和蛋白激酶Cα(PKC-α)的增加有所减轻。
结论/解读:总体而言,本研究表明,在实验性糖尿病中,Nox4在足细胞中的表达通过促进足细胞病变、蛋白尿和细胞外基质积聚而产生有害作用,强调了NOX4作为新型肾脏保护剂靶点的作用。