School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
Science. 2013 May 3;340(6132):603-7. doi: 10.1126/science.1231806.
Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.
苍蝇是地球上最敏捷的飞行生物之一。要在同样大小的机器人中模仿这种空中能力,需要微小、高效的机械组件,这些组件面临着由力尺度定律控制的小型化挑战,这为推进、驱动和制造提出了非常规的解决方案。为此,我们开发了高功率密度的压电飞行肌肉和一种能够快速原型化铰接式、基于弯曲的亚毫米级机构的制造方法。我们制造了一个 80 毫克重的、昆虫大小的、模仿苍蝇形态的扑翼机器人。通过采用一种依赖于机器人动力学的有限信息的模块化飞行控制方法,我们实现了有绳但不受约束的稳定悬停和基本的受控飞行机动。结果验证了一套足够的创新,可实现人工、类似昆虫的飞行。