Zhao Yusen, Liu Zixiao, Shi Pengju, Chen Chi, Alsaid Yousif, Yan Yichen, He Ximin
Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
California Nanosystems Institute, Los Angeles, CA, USA.
Nat Mater. 2025 Jan;24(1):116-124. doi: 10.1038/s41563-024-02035-3. Epub 2024 Oct 24.
High-power autonomous soft actuators are in high demand yet face challenges related to tethered power and dedicated control. Light-driven oscillation by stimuli-responsive polymers allows for remote energy input and control autonomy, but generating high output power density is a daunting challenge requiring an advanced material design principle. Here, inspired by the flight muscle structure of insects, we develop a self-oscillator based on two antagonistically contracting photo-active layers sandwiching an inactive layer. The actuator produces an output power density of 33 W kg, 275-fold higher than other configurations and comparable to that of insects. Such oscillators allow for broad-wavelength operation and multifunction integration, including proprioceptive actuation and energy harvesting. We demonstrate high-performance flapping motion enabling various locomotion modes, including a wing with a thrust-to-weight ratio of 0.32. This work advances autonomous, sustained and untethered actuators for powerful robotics.
高功率自主软致动器需求旺盛,但面临与有线供电和专用控制相关的挑战。刺激响应聚合物的光驱动振荡实现了远程能量输入和控制自主性,但产生高输出功率密度是一项艰巨挑战,需要先进的材料设计原则。在此,受昆虫飞行肌肉结构启发,我们开发了一种基于两个反向收缩的光活性层夹着一个非活性层的自振荡器。该致动器产生的输出功率密度为33 W/kg,比其他配置高275倍,与昆虫相当。这种振荡器可实现宽波长操作和多功能集成,包括本体感受驱动和能量收集。我们展示了高性能的扑翼运动,可实现各种运动模式,包括推力重量比为0.32的翅膀。这项工作推动了用于强大机器人技术的自主、持续和无绳致动器的发展。