1 Sanford-Burnham Medical Research Institute , Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, La Jolla, California.
Antioxid Redox Signal. 2013 Oct 10;19(11):1173-84. doi: 10.1089/ars.2012.4928. Epub 2013 Jun 20.
Dynamin-related protein1 (Drp1) is a large GTPase that mediates mitochondrial fission. We recently reported in Alzheimer's disease (AD) that S-nitrosylation of Drp1 (forming S-nitroso [SNO]-Drp1) results in GTPase hyperactivity and mitochondrial fragmentation, thus impairing bioenergetics and inducing synaptic damage and neuronal loss. Here, since aberrant mitochondrial dynamics are also key features of Huntington's disease (HD), we investigated whether formation of SNO-Drp1 contributes to the pathogenesis of HD in cell-based and animal models.
We found that expression of mutant huntingtin (mutHTT) protein in primary cultured neurons triggers significant production of nitric oxide (NO). Consistent with this result, increased levels of SNO-Drp1 were found in the striatum of a transgenic mouse model of HD as well as in human postmortem brains from HD patients. Using specific fluorescence markers, we found that formation of SNO-Drp1 induced excessive mitochondrial fragmentation followed by loss of dendritic spines, signifying synaptic damage. These neurotoxic events were significantly abrogated after transfection with non-nitrosylatable mutant Drp1(C644A), or by the blocking of NO production using an nitric oxide synthase inhibitor. These findings suggest that SNO-Drp1 is a key mediator of mutHTT toxicity, and, thus, may represent a novel drug target for HD.
Our findings indicate that aberrant S-nitrosylation of Drp1 is a prominent pathological feature of neurodegenerative diseases such as AD and HD. Moreover, the SNO-Drp1 signaling pathway links mutHTT neurotoxicity to a malfunction in mitochondrial dynamics, resulting in neuronal synaptic damage in HD.
动力相关蛋白 1(Drp1)是一种介导线粒体裂变的大型 GTPase。我们最近在阿尔茨海默病(AD)中报道,Drp1 的 S-亚硝基化(形成 S-亚硝基[NO]-Drp1)导致 GTPase 超活性和线粒体碎片化,从而损害生物能量并诱导突触损伤和神经元丢失。在这里,由于异常的线粒体动力学也是亨廷顿病(HD)的关键特征,我们研究了 SNO-Drp1 的形成是否有助于 HD 在基于细胞和动物模型中的发病机制。
我们发现,在原代培养神经元中表达突变型亨廷顿蛋白(mutHTT)蛋白会引发大量一氧化氮(NO)的产生。与这一结果一致的是,在 HD 的转基因小鼠模型的纹状体以及 HD 患者的人死后大脑中发现了 SNO-Drp1 水平的升高。使用特定的荧光标记物,我们发现 SNO-Drp1 的形成诱导了过度的线粒体碎片化,随后是树突棘的丢失,这表明突触损伤。在用非硝化突变体 Drp1(C644A)转染或用一氧化氮合酶抑制剂阻断 NO 产生后,这些神经毒性事件显著减弱。这些发现表明,SNO-Drp1 是 mutHTT 毒性的关键介质,因此可能代表 HD 的一个新的药物靶点。
我们的发现表明,Drp1 的异常 S-亚硝基化是 AD 和 HD 等神经退行性疾病的一个突出的病理特征。此外,SNO-Drp1 信号通路将 mutHTT 神经毒性与线粒体动力学的功能障碍联系起来,导致 HD 中的神经元突触损伤。