Suppr超能文献

DRP1 的 S-亚硝基化不影响其酶活性,且并非阿尔茨海默病所特有。

S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer's disease.

机构信息

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.

出版信息

J Alzheimers Dis. 2010;20 Suppl 2(Suppl 2):S513-26. doi: 10.3233/JAD-2010-100552.

Abstract

Mitochondrial dysfunction and synaptic loss are among the earliest events linked to Alzheimer's disease (AD) and might play a causative role in disease onset and progression. The underlying mechanisms of mitochondrial and synaptic dysfunction in AD remain unclear. We previously reported that nitric oxide (NO) triggers persistent mitochondrial fission and causes neuronal cell death. A recent article claimed that S-nitrosylation of dynamin related protein 1 (DRP1) at cysteine 644 causes protein dimerization and increased GTPase activity and is the mechanism responsible for NO-induced mitochondrial fission and neuronal injury in AD, but not in Parkinson's disease (PD). However, this report remains controversial. To resolve the controversy, we investigated the effects of S-nitrosylation on DRP1 structure and function. Contrary to the previous report, S-nitrosylation of DRP1 does not increase GTPase activity or cause dimerization. In fact, DRP1 does not exist as a dimer under native conditions, but rather as a tetramer capable of self-assembly into higher order spiral- and ring-like oligomeric structures after nucleotide binding. S-nitrosylation, as confirmed by the biotin-switch assay, has no impact on DRP1 oligomerization. Importantly, we found no significant difference in S-nitrosylated DRP1 (SNO-DRP1) levels in brains of age-matched normal, AD, or PD patients. We also found that S-nitrosylation is not specific to DRP1 because S-nitrosylated optic atrophy 1 (SNO-OPA1) is present at comparable levels in all human brain samples. Finally, we show that NO triggers DRP1 phosphorylation at serine 616, which results in its activation and recruitment to mitochondria. Our data indicate the mechanism underlying nitrosative stress-induced mitochondrial fragmentation in AD is not DRP1 S-nitrosylation.

摘要

线粒体功能障碍和突触损失是与阿尔茨海默病(AD)相关的最早事件之一,可能在疾病的发生和进展中起因果作用。AD 中线粒体和突触功能障碍的潜在机制尚不清楚。我们之前报道过,一氧化氮(NO)引发持续的线粒体裂变,并导致神经元细胞死亡。最近的一篇文章声称,DRP1 第 644 位半胱氨酸的 S-亚硝基化导致蛋白质二聚化和 GTPase 活性增加,是 NO 诱导 AD 中线粒体裂变和神经元损伤的机制,但不是帕金森病(PD)的机制。然而,这一报告仍然存在争议。为了解决这一争议,我们研究了 S-亚硝基化对 DRP1 结构和功能的影响。与之前的报告相反,DRP1 的 S-亚硝基化不会增加 GTPase 活性或导致二聚化。事实上,DRP1 在天然状态下不存在二聚体,而是作为四聚体存在,能够在核苷酸结合后自组装成更高阶的螺旋和环形寡聚体结构。生物素转换实验证实 S-亚硝基化对 DRP1 寡聚化没有影响。重要的是,我们在年龄匹配的正常、AD 或 PD 患者的大脑中没有发现 S-亚硝基化 DRP1(SNO-DRP1)水平有显著差异。我们还发现 S-亚硝基化不是 DRP1 特异的,因为所有人类脑样本中都存在 S-亚硝基化光感受器萎缩蛋白 1(SNO-OPA1),且水平相当。最后,我们证明 NO 可引发 DRP1 丝氨酸 616 磷酸化,导致其激活并募集到线粒体。我们的数据表明,AD 中硝化应激诱导的线粒体碎片化的机制不是 DRP1 的 S-亚硝基化。

相似文献

1
S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer's disease.
J Alzheimers Dis. 2010;20 Suppl 2(Suppl 2):S513-26. doi: 10.3233/JAD-2010-100552.
3
S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.
Science. 2009 Apr 3;324(5923):102-5. doi: 10.1126/science.1171091.
5
S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration.
Mitochondrion. 2010 Aug;10(5):573-8. doi: 10.1016/j.mito.2010.04.007. Epub 2010 May 4.
7
Impaired balance of mitochondrial fission and fusion in Alzheimer's disease.
J Neurosci. 2009 Jul 15;29(28):9090-103. doi: 10.1523/JNEUROSCI.1357-09.2009.
9
Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis.
Biochim Biophys Acta. 2016 Nov;1863(11):2820-2834. doi: 10.1016/j.bbamcr.2016.09.003. Epub 2016 Sep 4.

引用本文的文献

1
Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics.
Int J Mol Sci. 2024 Oct 10;25(20):10911. doi: 10.3390/ijms252010911.
2
Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies.
Signal Transduct Target Ther. 2024 Aug 23;9(1):211. doi: 10.1038/s41392-024-01911-3.
4
Targeting mitochondrial shape: at the heart of cardioprotection.
Basic Res Cardiol. 2023 Nov 13;118(1):49. doi: 10.1007/s00395-023-01019-9.
6
Unveiling the potential of mitochondrial dynamics as a therapeutic strategy for acute kidney injury.
Front Cell Dev Biol. 2023 Aug 11;11:1244313. doi: 10.3389/fcell.2023.1244313. eCollection 2023.
8
Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology.
Antioxid Redox Signal. 2023 Oct;39(10-12):635-683. doi: 10.1089/ars.2022.0173. Epub 2023 Apr 11.
9
The role of mitochondrial fission in cardiovascular health and disease.
Nat Rev Cardiol. 2022 Nov;19(11):723-736. doi: 10.1038/s41569-022-00703-y. Epub 2022 May 6.
10
Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle.
Front Cell Dev Biol. 2022 Feb 21;10:826981. doi: 10.3389/fcell.2022.826981. eCollection 2022.

本文引用的文献

2
Impaired balance of mitochondrial fission and fusion in Alzheimer's disease.
J Neurosci. 2009 Jul 15;29(28):9090-103. doi: 10.1523/JNEUROSCI.1357-09.2009.
3
The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease.
J Neurochem. 2009 May;109 Suppl 1(Suppl 1):153-9. doi: 10.1111/j.1471-4159.2009.05867.x.
4
S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.
Science. 2009 Apr 3;324(5923):102-5. doi: 10.1126/science.1171091.
5
Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway.
Cell Death Differ. 2009 Jun;16(6):899-909. doi: 10.1038/cdd.2009.22. Epub 2009 Mar 20.
6
Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease.
Neurochem Int. 2009 Feb;54(2):84-8. doi: 10.1016/j.neuint.2008.10.013. Epub 2008 Dec 9.
7
Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19318-23. doi: 10.1073/pnas.0804871105. Epub 2008 Dec 2.
8
Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15803-8. doi: 10.1073/pnas.0808249105. Epub 2008 Oct 6.
9
Nitric oxide in health and disease of the nervous system.
Antioxid Redox Signal. 2009 Mar;11(3):541-54. doi: 10.1089/ars.2008.2234.
10
CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology.
J Cell Biol. 2008 Aug 11;182(3):573-85. doi: 10.1083/jcb.200802164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验