Suppr超能文献

阳离子大小失配和电荷相互作用导致掺杂剂在钙钛矿型锰氧化物表面偏析。

Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites.

机构信息

Laboratory for Electrochemical Interfaces, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

J Am Chem Soc. 2013 May 29;135(21):7909-25. doi: 10.1021/ja3125349. Epub 2013 May 17.

Abstract

Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln = La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations, and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SOFCs.

摘要

钙钛矿氧化物表面的阳离子偏析极大地影响固体氧化物燃料电池 (SOFC) 阴极的氧还原活性和稳定性。因此,需要一种统一的理论来解释这种现象的物理起源,以便设计具有最佳表面化学性质的阴极材料。我们通过定量评估掺杂剂与周围晶格的弹性和静电相互作用,将其作为在模型钙钛矿化合物 LnMnO3(主体阳离子 Ln = La、Sm)上发生偏析的关键驱动力。我们的方法将表面化学分析与模型致密薄膜的 X 射线光电子能谱和俄歇电子能谱以及与密度泛函理论(DFT)计算和分析模型相结合的计算分析相结合。通过改变所选掺杂剂(Ca、Sr、Ba)相对于主体阳离子(La、Sm)的半径,同时保持相同的电荷态,系统地诱导系统中的弹性能差异。通过改变我们模型中带电氧和阳离子空位的分布,引入静电能差异。在我们的实验中改变氧化学势会导致弹性能和静电相互作用的变化。我们的结果定量证明了掺杂剂在钙钛矿氧化物上偏析的机制包括弹性和静电能贡献。发现主体和掺杂剂阳离子之间的尺寸不匹配较小和化学膨胀的晶格降低了掺杂剂的偏析水平,并使阴极表面更加稳定。在调查的成分中,发现 Ca 掺杂的 LaMnO3 具有最稳定的表面组成,阳离子偏析最少。较大掺杂剂(Ba 和 Sr)的扩散动力学较慢,尽管弹性能驱动力较大,但可以在较低温度下动力学地捕获偏析。最后,扫描探针图像对比度表明,偏析时由掺杂氧化物形成的表面化学不均匀性是电绝缘的。本工作中从实验、DFT 计算和分析理论获得的结果之间的一致性提供了一种预测能力,可以为高性能 SOFC 定制阴极表面成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验