Suppr超能文献

RemA 是一种 DNA 结合蛋白,可激活枯草芽孢杆菌生物膜基质基因的表达。

RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis.

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Mol Microbiol. 2013 Jun;88(5):984-97. doi: 10.1111/mmi.12235. Epub 2013 May 7.

Abstract

Biofilm formation in Bacillus subtilis requires expression of the eps and tapA-sipW-tasA operons to synthesize the extracellular matrix components, extracellular polysaccharide and TasA amyloid proteins, respectively. Expression of both operons is inhibited by the DNA-binding protein master regulator of biofilm formation SinR and activated by the protein RemA. Here we show that RemA is a DNA-binding protein that binds to multiple sites upstream of the promoters of both operons and is both necessary and sufficient for transcriptional activation in vivo and in vitro. We further show that SinR negatively regulates eps operon expression by occluding RemA binding and thus for the P(eps) promoter SinR functions as an anti-activator. Finally, transcriptional profiling indicated that RemA was primarily a regulator of the extracellular matrix genes, but it also activated genes involved in osmoprotection, leading to the identification of another direct target, the opuA operon.

摘要

枯草芽孢杆菌生物膜的形成需要表达 eps 和 tapA-sipW-tasA 操纵子,分别合成细胞外基质成分——胞外多糖和 TasA 淀粉样蛋白。这两个操纵子的表达都受到生物膜形成的 DNA 结合蛋白主调控因子 SinR 的抑制,并被蛋白 RemA 激活。在这里,我们表明 RemA 是一种 DNA 结合蛋白,它可以结合到两个操纵子启动子上游的多个位点,并且是体内和体外转录激活所必需和充分的。我们进一步表明,SinR 通过阻断 RemA 结合来负调控 eps 操纵子的表达,因此对于 P(eps)启动子,SinR 作为一种反激活因子发挥作用。最后,转录谱分析表明,RemA 主要是细胞外基质基因的调控因子,但它也激活了参与渗透压保护的基因,导致另一个直接靶点 opuA 操纵子的鉴定。

相似文献

1
RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis.
Mol Microbiol. 2013 Jun;88(5):984-97. doi: 10.1111/mmi.12235. Epub 2013 May 7.
2
Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis.
J Bacteriol. 2013 Apr;195(8):1697-705. doi: 10.1128/JB.02201-12. Epub 2013 Feb 1.
3
RemA (YlzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis.
J Bacteriol. 2009 Jun;191(12):3981-91. doi: 10.1128/JB.00278-09. Epub 2009 Apr 10.
4
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Mol Microbiol. 2006 Feb;59(4):1216-28. doi: 10.1111/j.1365-2958.2005.05019.x.
5
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Mol Microbiol. 2008 Jun;68(5):1117-27. doi: 10.1111/j.1365-2958.2008.06201.x. Epub 2008 Apr 21.
6
Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21.
Biosci Biotechnol Biochem. 2014;78(5):898-907. doi: 10.1080/09168451.2014.915729. Epub 2014 May 28.
7
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh.
J Bacteriol. 2009 Nov;191(22):6822-32. doi: 10.1128/JB.00618-09. Epub 2009 Sep 18.
8
Bistability and biofilm formation in Bacillus subtilis.
Mol Microbiol. 2008 Jan;67(2):254-63. doi: 10.1111/j.1365-2958.2007.06040.x. Epub 2007 Nov 28.
9
The many faces of the unusual biofilm activator RemA.
Bioessays. 2022 May;44(5):e2200009. doi: 10.1002/bies.202200009. Epub 2022 Mar 15.
10
Spermidine promotes biofilm formation by activating expression of the matrix regulator .
J Biol Chem. 2017 Jul 21;292(29):12041-12053. doi: 10.1074/jbc.M117.789644. Epub 2017 May 25.

引用本文的文献

2
Bacterial Species in Engineered Living Materials: Strategies and Future Directions.
Microb Biotechnol. 2025 May;18(5):e70164. doi: 10.1111/1751-7915.70164.
3
The Complete Genome Sequence of Cbmb3 with Polyvinyl Chloride-Degrading Properties.
J Xenobiot. 2024 Feb 26;14(1):295-307. doi: 10.3390/jox14010018.
4
The alternative sigma factor SigN of is intrinsically toxic.
J Bacteriol. 2023 Oct 26;205(10):e0011223. doi: 10.1128/jb.00112-23. Epub 2023 Sep 20.
5
Multiple Modular Engineering of Cell Factories for Enhanced Production of Alkaline Proteases From .
Front Bioeng Biotechnol. 2022 Apr 14;10:866066. doi: 10.3389/fbioe.2022.866066. eCollection 2022.
6
Structural and functional characterization of the bacterial biofilm activator RemA.
Nat Commun. 2021 Sep 29;12(1):5707. doi: 10.1038/s41467-021-26005-4.
7
Defining the Expression, Production, and Signaling Roles of Specialized Metabolites during Bacillus subtilis Differentiation.
J Bacteriol. 2021 Oct 25;203(22):e0033721. doi: 10.1128/JB.00337-21. Epub 2021 Aug 30.
8
Gene Regulation of Biofilm-Associated Functional Amyloids.
Pathogens. 2021 Apr 19;10(4):490. doi: 10.3390/pathogens10040490.
10
Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
J Bacteriol. 2020 Jun 25;202(14). doi: 10.1128/JB.00120-20.

本文引用的文献

2
Osmotic pressure can regulate matrix gene expression in Bacillus subtilis.
Mol Microbiol. 2012 Oct;86(2):426-36. doi: 10.1111/j.1365-2958.2012.08201.x. Epub 2012 Sep 7.
3
BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms.
Mol Microbiol. 2012 Jul;85(1):51-66. doi: 10.1111/j.1365-2958.2012.08094.x. Epub 2012 May 28.
4
Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis.
Science. 2012 Mar 2;335(6072):1103-6. doi: 10.1126/science.1206848.
5
7
Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis.
J Mol Biol. 2011 Aug 19;411(3):597-613. doi: 10.1016/j.jmb.2011.06.004. Epub 2011 Jun 25.
8
An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.
Mol Microbiol. 2011 Jun;80(5):1155-68. doi: 10.1111/j.1365-2958.2011.07653.x. Epub 2011 May 5.
9
Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis.
EMBO J. 2011 Apr 6;30(7):1402-13. doi: 10.1038/emboj.2011.36. Epub 2011 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验