Suppr超能文献

渗透压可调控枯草芽孢杆菌基质基因表达。

Osmotic pressure can regulate matrix gene expression in Bacillus subtilis.

机构信息

Departments of Physics and Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

出版信息

Mol Microbiol. 2012 Oct;86(2):426-36. doi: 10.1111/j.1365-2958.2012.08201.x. Epub 2012 Sep 7.

Abstract

Many bacteria organize themselves into structurally complex communities known as biofilms in which the cells are held together by an extracellular matrix. In general, the amount of extracellular matrix is related to the robustness of the biofilm. Yet, the specific signals that regulate the synthesis of matrix remain poorly understood. Here we show that the matrix itself can be a cue that regulates the expression of the genes involved in matrix synthesis in Bacillus subtilis. The presence of the exopolysaccharide component of the matrix causes an increase in osmotic pressure that leads to an inhibition of matrix gene expression. We further show that non-specific changes in osmotic pressure also inhibit matrix gene expression and do so by activating the histidine kinase KinD. KinD, in turn, directs the phosphorylation of the master regulatory protein Spo0A, which at high levels represses matrix gene expression. Sensing a physical cue such as osmotic pressure, in addition to chemical cues, could be a strategy to non-specifically co-ordinate the behaviour of cells in communities composed of many different species.

摘要

许多细菌会组织成结构复杂的群落,称为生物膜,其中细胞由细胞外基质结合在一起。通常,细胞外基质的数量与生物膜的坚固程度有关。然而,调节基质合成的特定信号仍然知之甚少。在这里,我们表明基质本身可以作为一种信号,调节枯草芽孢杆菌中参与基质合成的基因的表达。基质的胞外多糖成分的存在会导致渗透压增加,从而抑制基质基因的表达。我们进一步表明,渗透压的非特异性变化也会抑制基质基因的表达,其方式是激活组氨酸激酶 KinD。KinD 反过来又指导主调控蛋白 Spo0A 的磷酸化,高水平的 Spo0A 抑制基质基因的表达。除了化学信号外,感应物理信号(如渗透压)可能是一种策略,可以非特异性地协调由许多不同物种组成的群落中细胞的行为。

相似文献

1
Osmotic pressure can regulate matrix gene expression in Bacillus subtilis.
Mol Microbiol. 2012 Oct;86(2):426-36. doi: 10.1111/j.1365-2958.2012.08201.x. Epub 2012 Sep 7.
2
Phosphorylation of Spo0A by the histidine kinase KinD requires the lipoprotein med in Bacillus subtilis.
J Bacteriol. 2011 Aug;193(15):3949-55. doi: 10.1128/JB.05199-11. Epub 2011 May 27.
3
RemA (YlzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis.
J Bacteriol. 2009 Jun;191(12):3981-91. doi: 10.1128/JB.00278-09. Epub 2009 Apr 10.
5
Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis.
J Bacteriol. 2011 Feb;193(3):679-85. doi: 10.1128/JB.01186-10. Epub 2010 Nov 19.
6
Potassium sensing histidine kinase in Bacillus subtilis.
Methods Enzymol. 2010;471:229-51. doi: 10.1016/S0076-6879(10)71013-2. Epub 2010 Mar 1.
8
Osmotic pressure induced by extracellular matrix drives Bacillus subtilis biofilms' self-healing.
Comput Biol Chem. 2022 Apr;97:107632. doi: 10.1016/j.compbiolchem.2022.107632. Epub 2022 Jan 15.
9
In vivo functional characterization of the transmembrane histidine kinase KinC in Bacillus subtilis.
Microbiology (Reading). 2015 May;161(Pt 5):1092-1104. doi: 10.1099/mic.0.000054. Epub 2015 Feb 20.
10
Novel modulators controlling entry into sporulation in Bacillus subtilis.
J Bacteriol. 2013 Apr;195(7):1475-83. doi: 10.1128/JB.02160-12. Epub 2013 Jan 18.

引用本文的文献

1
Morphogenesis of bacterial cables in polymeric environments.
Sci Adv. 2025 Jan 17;11(3):eadq7797. doi: 10.1126/sciadv.adq7797.
4
Microstructural and Rheological Transitions in Bacterial Biofilms.
Adv Sci (Weinh). 2023 Sep;10(27):e2207373. doi: 10.1002/advs.202207373. Epub 2023 Jul 31.
5
The Reverse Fitness Deficiency by Activating a Novel β-Glucosidase Under Low Osmostress.
Front Microbiol. 2022 May 2;13:887967. doi: 10.3389/fmicb.2022.887967. eCollection 2022.
6
Systems view of Bacillus subtilis pellicle development.
NPJ Biofilms Microbiomes. 2022 Apr 12;8(1):25. doi: 10.1038/s41522-022-00293-0.
7
Preliminary Study of Resistance Mechanism of to SYAUP-CN-26.
Molecules. 2022 Jan 29;27(3):936. doi: 10.3390/molecules27030936.
8
Imaging flow cytometry reveals a dual role for exopolysaccharides in biofilms: To promote self-adhesion while repelling non-self-community members.
Comput Struct Biotechnol J. 2021 Dec 4;20:15-25. doi: 10.1016/j.csbj.2021.11.043. eCollection 2022.
9
Chickpea-Derived Prebiotic Substances Trigger Biofilm Formation by .
Nutrients. 2021 Nov 25;13(12):4228. doi: 10.3390/nu13124228.
10
Cryptic surface-associated multicellularity emerges through cell adhesion and its regulation.
PLoS Biol. 2021 May 13;19(5):e3001250. doi: 10.1371/journal.pbio.3001250. eCollection 2021 May.

本文引用的文献

1
A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants.
Mol Microbiol. 2012 Aug;85(3):418-30. doi: 10.1111/j.1365-2958.2012.08109.x. Epub 2012 Jun 20.
2
Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis.
EMBO J. 2011 Apr 6;30(7):1402-13. doi: 10.1038/emboj.2011.36. Epub 2011 Feb 15.
3
Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms.
Biofouling. 2011 Feb;27(2):207-15. doi: 10.1080/08927014.2011.554977.
5
The biofilm matrix.
Nat Rev Microbiol. 2010 Sep;8(9):623-33. doi: 10.1038/nrmicro2415. Epub 2010 Aug 2.
6
Biofilms.
Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a000398. doi: 10.1101/cshperspect.a000398. Epub 2010 Jun 2.
7
QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli.
Mol Microbiol. 2009 Sep;73(6):1020-31. doi: 10.1111/j.1365-2958.2009.06826.x. Epub 2009 Aug 23.
9
Biofilm development with an emphasis on Bacillus subtilis.
Curr Top Microbiol Immunol. 2008;322:1-16. doi: 10.1007/978-3-540-75418-3_1.
10
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev. 2008 Apr 1;22(7):945-53. doi: 10.1101/gad.1645008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验