Suppr超能文献

基于驻波的片上多通道液滴分选器。

An on-chip, multichannel droplet sorter using standing surface acoustic waves.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Anal Chem. 2013 Jun 4;85(11):5468-74. doi: 10.1021/ac400548d. Epub 2013 May 23.

Abstract

The emerging field of droplet microfluidics requires effective on-chip handling and sorting of droplets. In this work, we demonstrate a microfluidic device that is capable of sorting picoliter water-in-oil droplets into multiple outputs using standing surface acoustic waves (SSAW). This device integrates a single-layer microfluidic channel with interdigital transducers (IDTs) to achieve on-chip droplet generation and sorting. Within the SSAW field, water-in-oil droplets experience an acoustic radiation force and are pushed toward the acoustic pressure node. As a result, by tuning the frequency of the SSAW excitation, the position of the pressure nodes can be changed and droplets can be sorted to different outlets at rates up to 222 droplets s(-1). With its advantages in simplicity, controllability, versatility, noninvasiveness, and capability to be integrated with other on-chip components such as droplet manipulation and optical detection units, the technique presented here could be valuable for the development of droplet-based micro total analysis systems (μTAS).

摘要

新兴的液滴微流控领域需要有效地在芯片上处理和分选液滴。在这项工作中,我们展示了一种微流控器件,该器件能够使用驻波表面声波(SSAW)将皮升级的油包水液滴分选到多个出口。该器件集成了单层微流道和叉指换能器(IDT),以实现芯片上的液滴生成和分选。在 SSAW 场中,油包水液滴会受到声辐射力的作用,并被推向声压节点。因此,通过调整 SSAW 激励的频率,可以改变压力节点的位置,从而以高达 222 个液滴 s(-1)的速度将液滴分选到不同的出口。由于其具有简单、可控、多功能、非侵入性以及与其他芯片组件(如液滴操作和光学检测单元)集成的能力,这里提出的技术对于开发基于液滴的微全分析系统(μTAS)可能具有重要价值。

相似文献

1
An on-chip, multichannel droplet sorter using standing surface acoustic waves.
Anal Chem. 2013 Jun 4;85(11):5468-74. doi: 10.1021/ac400548d. Epub 2013 May 23.
2
Microfluidic droplet sorting with a high frequency ultrasound beam.
Lab Chip. 2012 Aug 7;12(15):2736-42. doi: 10.1039/c2lc21123h. Epub 2012 May 29.
3
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
Lab Chip. 2009 Dec 7;9(23):3354-9. doi: 10.1039/b915113c. Epub 2009 Oct 12.
4
Standing surface acoustic wave (SSAW)-based cell washing.
Lab Chip. 2015 Jan 7;15(1):331-8. doi: 10.1039/c4lc00903g.
5
6
Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
Small. 2018 Oct;14(40):e1801996. doi: 10.1002/smll.201801996. Epub 2018 Aug 31.
7
Surface acoustic wave enabled pipette on a chip.
Lab Chip. 2017 Jan 31;17(3):438-447. doi: 10.1039/c6lc01318j.
9
Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics.
Anal Chim Acta. 2022 Oct 9;1229:340363. doi: 10.1016/j.aca.2022.340363. Epub 2022 Sep 10.
10
Fast on-demand droplet fusion using transient cavitation bubbles.
Lab Chip. 2011 Jun 7;11(11):1879-85. doi: 10.1039/c0lc00661k. Epub 2011 Apr 12.

引用本文的文献

1
Droplet acoustofluidics: Recent progress and challenges.
Biomicrofluidics. 2025 Jun 4;19(3):031502. doi: 10.1063/5.0261531. eCollection 2025 May.
2
A Slanted-Finger Interdigitated Transducer Microfluidic Device for Particles Sorting.
Micromachines (Basel). 2025 Apr 20;16(4):483. doi: 10.3390/mi16040483.
3
Movable surface acoustic wave tweezers: a versatile toolbox for micromanipulation.
Microsyst Nanoeng. 2024 Oct 28;10(1):155. doi: 10.1038/s41378-024-00777-3.
4
Exploiting Sound for Emerging Applications of Extracellular Vesicles.
Nano Res. 2024 Feb;17(2):462-475. doi: 10.1007/s12274-023-5840-6. Epub 2023 Jul 1.
5
Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices.
ACS Omega. 2024 Mar 28;9(14):16097-16105. doi: 10.1021/acsomega.3c09881. eCollection 2024 Apr 9.
6
A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves.
Sensors (Basel). 2023 Oct 8;23(19):8317. doi: 10.3390/s23198317.
7
iSort enables automated complex microfluidic droplet sorting in an effort to democratize technology.
Cell Rep Methods. 2023 May 12;3(5):100478. doi: 10.1016/j.crmeth.2023.100478. eCollection 2023 May 22.
9
Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance.
Ultrason Sonochem. 2023 Feb;93:106305. doi: 10.1016/j.ultsonch.2023.106305. Epub 2023 Jan 18.
10
Droplet Detection and Sorting System in Microfluidics: A Review.
Micromachines (Basel). 2022 Dec 30;14(1):103. doi: 10.3390/mi14010103.

本文引用的文献

3
A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis.
Anal Chem. 2012 Dec 18;84(24):10745-9. doi: 10.1021/ac302623z. Epub 2012 Nov 27.
4
Digital microfluidic magnetic separation for particle-based immunoassays.
Anal Chem. 2012 Oct 16;84(20):8805-12. doi: 10.1021/ac3020627. Epub 2012 Sep 26.
5
Standing surface acoustic wave (SSAW) based multichannel cell sorting.
Lab Chip. 2012 Nov 7;12(21):4228-31. doi: 10.1039/c2lc40751e.
6
Exploiting mechanical biomarkers in microfluidics.
Lab Chip. 2012 Oct 21;12(20):4006-9. doi: 10.1039/c2lc90100e.
8
Revisiting lab-on-a-chip technology for drug discovery.
Nat Rev Drug Discov. 2012 Aug;11(8):620-32. doi: 10.1038/nrd3799.
9
Surface acoustic wave (SAW) acoustophoresis: now and beyond.
Lab Chip. 2012 Aug 21;12(16):2766-70. doi: 10.1039/c2lc90076a. Epub 2012 Jul 10.
10
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11105-9. doi: 10.1073/pnas.1209288109. Epub 2012 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验