Suppr超能文献

基于“蛋白质亲和指纹”的化合物多样性选择可改善生物活性化学空间的采样。

Diversity selection of compounds based on 'protein affinity fingerprints' improves sampling of bioactive chemical space.

机构信息

Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.

出版信息

Chem Biol Drug Des. 2013 Sep;82(3):252-66. doi: 10.1111/cbdd.12155.

Abstract

Diversity selection is a frequently applied strategy for assembling high-throughput screening libraries, making the assumption that a diverse compound set increases chances of finding bioactive molecules. Based on previous work on experimental 'affinity fingerprints', in this study, a novel diversity selection method is benchmarked that utilizes predicted bioactivity profiles as descriptors. Compounds were selected based on their predicted activity against half of the targets (training set), and diversity was assessed based on coverage of the remaining (test set) targets. Simultaneously, fingerprint-based diversity selection was performed. An original version of the method exhibited on average 5% and an improved version on average 10% increase in target space coverage compared with the fingerprint-based methods. As a typical case, bioactivity-based selection of 231 compounds (2%) from a particular data set ('Cutoff-40') resulted in 47.0% and 50.1% coverage, while fingerprint-based selection only achieved 38.4% target coverage for the same subset size. In conclusion, the novel bioactivity-based selection method outperformed the fingerprint-based method in sampling bioactive chemical space on the data sets considered. The structures retrieved were structurally more acceptable to medicinal chemists while at the same time being more lipophilic, hence bioactivity-based diversity selection of compounds would best be combined with physicochemical property filters in practice.

摘要

多样性选择是一种常用于组装高通量筛选文库的策略,其假设是多样化的化合物集合可以增加发现生物活性分子的机会。基于之前关于实验“亲和指纹”的工作,本研究中,我们对一种利用预测生物活性谱作为描述符的新型多样性选择方法进行了基准测试。根据化合物对一半目标(训练集)的预测活性进行选择,并根据对其余目标(测试集)的覆盖度来评估多样性。同时,还进行了基于指纹的多样性选择。与基于指纹的方法相比,原始版本的方法平均增加了 5%,改进后的版本平均增加了 10%的目标空间覆盖率。作为一个典型案例,从特定数据集(“Cutoff-40”)中选择 231 个化合物(2%)进行基于生物活性的选择,得到了 47.0%和 50.1%的覆盖率,而基于指纹的选择对于相同的子集大小仅实现了 38.4%的目标覆盖率。总之,在所考虑的数据集上,新型基于生物活性的选择方法在采样生物活性化学空间方面优于基于指纹的方法。检索到的结构对药物化学家来说更具结构可接受性,同时也更具亲脂性,因此化合物的基于生物活性的多样性选择在实践中最好与物理化学性质过滤器相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验