Department of Medicine, Division of NanoMedicine, Center for Environmental Implications of Nanotechnology, California Nanosystems Institute, University of California at Los Angeles, Los Angeles, California, USA.
Environ Health Perspect. 2013 Jun;121(6):683-90. doi: 10.1289/ehp.1306561. Epub 2013 May 6.
Differences in interlaboratory research protocols contribute to the conflicting data in the literature regarding engineered nanomaterial (ENM) bioactivity.
Grantees of a National Institute of Health Sciences (NIEHS)-funded consortium program performed two phases of in vitro testing with selected ENMs in an effort to identify and minimize sources of variability.
Consortium program participants (CPPs) conducted ENM bioactivity evaluations on zinc oxide (ZnO), three forms of titanium dioxide (TiO2), and three forms of multiwalled carbon nanotubes (MWCNTs). In addition, CPPs performed bioassays using three mammalian cell lines (BEAS-2B, RLE-6TN, and THP-1) selected in order to cover two different species (rat and human), two different lung epithelial cells (alveolar type II and bronchial epithelial cells), and two different cell types (epithelial cells and macrophages). CPPs also measured cytotoxicity in all cell types while measuring inflammasome activation [interleukin-1β (IL-1β) release] using only THP-1 cells.
The overall in vitro toxicity profiles of ENM were as follows: ZnO was cytotoxic to all cell types at ≥ 50 μg/mL, but did not induce IL-1β. TiO2 was not cytotoxic except for the nanobelt form, which was cytotoxic and induced significant IL-1β production in THP-1 cells. MWCNTs did not produce cytotoxicity, but stimulated lower levels of IL-1β production in THP-1 cells, with the original MWCNT producing the most IL-1β.
The results provide justification for the inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in vitro screening. In addition, the results suggest that conducting studies with multiple relevant cell types to avoid false-negative outcomes is critical for accurate evaluation of ENM bioactivity.
不同实验室研究方案的差异导致了关于工程纳米材料(ENM)生物活性的文献中存在相互矛盾的数据。
国家环境卫生科学研究所(NIEHS)资助的财团计划的受赠者进行了两个阶段的体外测试,以选择的 ENMs 为对象,努力确定并最小化变异性的来源。
财团计划参与者(CPPs)对氧化锌(ZnO)、三种形式的二氧化钛(TiO2)和三种形式的多壁碳纳米管(MWCNT)进行了 ENM 生物活性评估。此外,CPPs 使用三种哺乳动物细胞系(BEAS-2B、RLE-6TN 和 THP-1)进行了生物测定,这些细胞系的选择是为了涵盖两个不同的物种(大鼠和人类)、两种不同的肺上皮细胞(肺泡 II 型和支气管上皮细胞)和两种不同的细胞类型(上皮细胞和巨噬细胞)。CPPs 还在所有细胞类型中测量细胞毒性,同时仅使用 THP-1 细胞测量炎症小体激活(白细胞介素 1β(IL-1β)释放)。
ENM 的整体体外毒性谱如下:ZnO 在≥50μg/mL 时对所有细胞类型均具有细胞毒性,但不诱导 IL-1β。TiO2 除纳米带形式外没有细胞毒性,纳米带形式具有细胞毒性,并在 THP-1 细胞中诱导显著的 IL-1β产生。MWCNT 没有产生细胞毒性,但在 THP-1 细胞中刺激产生较低水平的 IL-1β,其中原始 MWCNT 产生的 IL-1β最多。
结果为在体外筛选中包含与传统细胞毒性测定相关的机制相关生物活性测定提供了依据。此外,结果表明,使用多种相关细胞类型进行研究以避免假阴性结果对于准确评估 ENM 生物活性至关重要。