Poon Wing-Lam, Alenius Harri, Ndika Joseph, Fortino Vittorio, Kolhinen Vesa, Meščeriakovas Arūnas, Wang Mingfu, Greco Dario, Lähde Anna, Jokiniemi Jorma, Lee Jetty Chung-Yung, El-Nezami Hani, Karisola Piia
a School of Biological Sciences , The University of Hong Kong , Hong Kong.
b Department of Bacteriology and Immunology , University of Helsinki , Helsinki , Finland.
Nanotoxicology. 2017 Sep;11(7):936-951. doi: 10.1080/17435390.2017.1382600. Epub 2017 Sep 29.
Nano-sized metal oxides are currently the most manufactured nanomaterials (NMs), and are increasingly used in consumer products. Recent exposure data reveal a genuine potential for adverse health outcomes for a vast array of NMs, however the underlying mechanisms are not fully understood. To elucidate size-related molecular effects, differentiated THP-1 cells were exposed to nano-sized materials (n-TiO n-ZnO and n-Ag), or their bulk-sized (b-ZnO and b-TiO) or ionic (i-Ag) counterparts, and genome-wide gene expression changes were studied at low-toxic concentrations (<15% cytotoxicity). TiO materials were nontoxic in MTT assay, inducing only minor transcriptional changes. ZnO and Ag elicited dose-dependent cytotoxicity, wherein ionic and particulate effects were synergistic with respect to n-ZnO-induced cytotoxicity. In gene expression analyzes, 6 h and 24 h samples formed two separate hierarchical clusters. N-ZnO and n-Ag shared only 3.1% and 24.6% differentially expressed genes (DEGs) when compared to corresponding control. All particles, except TiO, activated various metallothioneins. At 6 h, n-Zn, b-Zn and n-Ag induced various immunity related genes associating to pattern recognition (including toll-like receptor), macrophage maturation, inflammatory response (TNF and IL-1beta), chemotaxis (CXCL8) and leucocyte migration (CXCL2-3 and CXCL14). After 24 h exposure, especially n-Ag induced the expression of genes related to virus recognition and type I interferon responses. These results strongly suggest that in addition to ionic effects mediated by metallothioneins, n-Zn and n-Ag induce expression of genes involved in several innate and adaptive immunity associated pathways, which are known to play crucial role in immuno-regulation. This raises the concern of safe use of metal oxide and metal nanoparticle products, and their biological effects.
纳米级金属氧化物是目前产量最高的纳米材料(NMs),并越来越多地用于消费品中。最近的暴露数据显示,大量纳米材料确实存在对健康产生不良影响的可能性,但其潜在机制尚未完全明了。为了阐明与尺寸相关的分子效应,将分化的THP-1细胞暴露于纳米级材料(纳米TiO、纳米ZnO和纳米Ag)、其块状材料(块状ZnO和块状TiO)或离子形式(离子Ag),并在低毒浓度(细胞毒性<15%)下研究全基因组基因表达变化。TiO材料在MTT试验中无毒,仅引起微小的转录变化。ZnO和Ag引发剂量依赖性细胞毒性,其中离子效应和颗粒效应在纳米ZnO诱导的细胞毒性方面具有协同作用。在基因表达分析中,6小时和24小时的样本形成了两个独立的层次聚类。与相应对照相比,纳米ZnO和纳米Ag仅共享3.1%和24.6%的差异表达基因(DEGs)。除TiO外,所有颗粒均激活了各种金属硫蛋白。在6小时时,纳米Zn、块状Zn和纳米Ag诱导了各种与模式识别(包括Toll样受体)、巨噬细胞成熟、炎症反应(TNF和IL-1β)、趋化作用(CXCL8)和白细胞迁移(CXCL2-3和CXCL14)相关的免疫相关基因。暴露24小时后,尤其是纳米Ag诱导了与病毒识别和I型干扰素反应相关的基因表达。这些结果强烈表明,除了金属硫蛋白介导的离子效应外,纳米Zn和纳米Ag还诱导了参与多种先天和适应性免疫相关途径的基因表达,而这些途径在免疫调节中起着关键作用。这引发了对金属氧化物和金属纳米颗粒产品安全使用及其生物学效应的关注。
J Toxicol Environ Health A. 2014
Toxicol Appl Pharmacol. 2014-4-16
Environ Toxicol Pharmacol. 2024-6
Int J Nanomedicine. 2025-4-1
Biomed Rep. 2024-2-21