Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Program in Cell Biology, University of California, San Francisco, California 94143, USA.
J Biol Chem. 2013 Jun 21;288(25):18546-60. doi: 10.1074/jbc.M112.446591. Epub 2013 May 6.
Human embryonic stem cells and mouse epiblast stem cells represent a primed pluripotent stem cell state that requires TGF-β/activin signaling. TGF-β and/or activin are commonly thought to regulate transcription through both Smad2 and Smad3. However, the different contributions of these two Smads to primed pluripotency and the downstream events that they may regulate remain poorly understood. We addressed the individual roles of Smad2 and Smad3 in the maintenance of primed pluripotency. We found that Smad2, but not Smad3, is required to maintain the undifferentiated pluripotent state. We defined a Smad2 regulatory circuit in human embryonic stem cells and mouse epiblast stem cells, in which Smad2 acts through binding to regulatory promoter sequences to activate Nanog expression while in parallel repressing autocrine bone morphogenetic protein signaling. Increased autocrine bone morphogenetic protein signaling caused by Smad2 down-regulation leads to cell differentiation toward the trophectoderm, mesoderm, and germ cell lineages. Additionally, induction of Cdx2 expression, as a result of decreased Smad2 expression, leads to repression of Oct4 expression, which, together with the decreased Nanog expression, accelerates the loss of pluripotency. These findings reveal that Smad2 is a unique integrator of transcription and signaling events and is essential for the maintenance of the mouse and human primed pluripotent stem cell state.
人类胚胎干细胞和小鼠上胚层干细胞代表一种初始多能干细胞状态,需要 TGF-β/激活素信号。TGF-β和/或激活素通常被认为通过 Smad2 和 Smad3 调节转录。然而,这两种 Smad 对初始多能性的不同贡献以及它们可能调节的下游事件仍知之甚少。我们研究了 Smad2 和 Smad3 在维持初始多能性中的各自作用。我们发现 Smad2 而不是 Smad3 是维持未分化多能状态所必需的。我们在人类胚胎干细胞和小鼠上胚层干细胞中定义了一个 Smad2 调节回路,其中 Smad2 通过结合到调节启动子序列上来激活 Nanog 表达,同时平行抑制自分泌骨形态发生蛋白信号。Smad2 下调引起的自分泌骨形态发生蛋白信号增加导致细胞向滋养外胚层、中胚层和生殖细胞谱系分化。此外,由于 Smad2 表达降低而诱导 Cdx2 表达导致 Oct4 表达被抑制,这与 Nanog 表达降低一起加速了多能性的丧失。这些发现表明 Smad2 是转录和信号事件的独特整合因子,对于维持小鼠和人类初始多能干细胞状态是必不可少的。