Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Small. 2013 Sep 23;9(18):3169-82. doi: 10.1002/smll.201300424. Epub 2013 May 5.
Photodegradation of organic pollutants in aqueous solution is a promising method for environmental purification. Photocatalysts capable of promoting this reaction are often composed of noble metal nanoparticles deposited on a semiconductor. Unfortunately, the separation of these semiconductor-metal nanopowders from the treated water is very difficult and energy consumptive, so their usefulness in practical applications is limited. Here, a precisely controlled synthesis of a large-scale and highly efficient photocatalyst composed of monolayered Au nanoparticles (AuNPs) chemically bound to vertically aligned ZnO nanorod arrays (ZNA) through a bifunctional surface molecular linker is demonstrated. Thioctic acid with sufficient steric stabilization is used as a molecular linker. High density unaggregated AuNPs bonding on entire surfaces of ZNA are successfully prepared on a conductive film/substrate, allowing easy recovery and reuse of the photocatalysts. Surprisingly, the ZNA-AuNPs heterostructures exhibit a photodegradation rate 8.1 times higher than that recorded for the bare ZNA under UV irradiation. High density AuNPs, dispersed perfectly on the ZNA surfaces, significantly improve the separation of the photogenerated electron-hole pairs, enlarge the reaction space, and consequently enhance the photocatalytic property for degradation of chemical pollutants. Photoelectron, photoluminescence and photoconductive measurements confirm the discussion on the charge carrier separation and photocatalytic experimental data. The demonstrated higher photodegradation rates demonstrated indicate that the ZNA-AuNPs heterostructures are candidates for the next-generation photocatalysts, replacing the conventional slurry photocatalysts.
水溶液中有机污染物的光降解是一种很有前途的环境净化方法。能够促进这种反应的光催化剂通常由沉积在半导体上的贵金属纳米粒子组成。不幸的是,从处理过的水中分离这些半导体-金属纳米粉末非常困难且耗费能源,因此它们在实际应用中的用途受到限制。在这里,展示了一种通过双功能表面分子连接体将单层金纳米粒子(AuNPs)化学结合到垂直排列的氧化锌纳米棒阵列(ZNA)上的大规模、高效光催化剂的精确控制合成。具有足够空间位阻稳定性的硫辛酸被用作分子连接体。在导电薄膜/基底上成功制备了高密度、无聚集的 AuNPs 键合在整个 ZNA 表面上,从而可以轻松回收和再利用光催化剂。令人惊讶的是,ZNA-AuNPs 异质结构在紫外光照射下的光降解速率比裸 ZNA 高 8.1 倍。高密度的 AuNPs 完美地分散在 ZNA 表面上,显著提高了光生电子-空穴对的分离效率,扩大了反应空间,从而增强了光催化降解化学污染物的性能。光电子、光致发光和光电导测量证实了对载流子分离和光催化实验数据的讨论。所展示的更高的光降解速率表明,ZNA-AuNPs 异质结构是下一代光催化剂的候选者,可替代传统的浆料光催化剂。