Suppr超能文献

用于增强光催化产氢的高熵合金表面及其与半导体界面的光谱和理论洞察。

Spectroscopic and Theoretical Insights Into High-Entropy-Alloy Surfaces and Their Interfaces with Semiconductors for Enhanced Photocatalytic Hydrogen Production.

作者信息

Lin Jui-Tai, Hsiao Yueh-Chun, Li Chao, Tseng Ching-Yuan, He Zong-Ying, Gardner Adrian M, Chen Yi, Yang Chueh-Cheng, Wang Chia-Hsin, Lin Shang-Cheng, Lin Xin-Xuan, Lin Chih-Yi, Lin Kun-Han, Cowan Alexander J, Yang Tung-Han

机构信息

Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan.

Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK.

出版信息

Small. 2025 Jun;21(25):e2503512. doi: 10.1002/smll.202503512. Epub 2025 May 8.

Abstract

Recently, high-entropy alloy (HEA) nanocatalysts have shown outstanding catalytic performance. However, their integration with semiconductors for photocatalytic reactions remains largely unexplored. Here, Pd@HEA core-shell nanocrystals with controlled compositions and facets on TiO supports are synthesized, achieving significantly enhanced photocatalytic hydrogen production. Compared to Pd@Pt/TiO, Pd@PtPdIrRuRh core-shell nanocubes/TiO exhibit superior photoactivity, driven by optimized Schottky junctions and synergistic multimetallic interactions that enhance photocatalysis. UV photoelectron spectroscopy reveals a high work function of 4.81 eV for Pd@PtPdIrRuRh, enabling efficient charge separation between Pd@HEA and TiO₂. Meanwhile, transient absorption spectroscopy confirms a significantly prolonged carrier lifetime of 4 ms, far surpassing that of pure TiO; (65 µs). In addition, in situ X-ray photoelectron spectroscopy confirms that photo-induced electrons preferentially accumulate on Ir and Pt sites, increasing their electron density and identifying them as primary adsorption sites. Furthermore, density functional theory calculations further reveal that Pt-based bridge sites exhibit a more optimal hydrogen binding free energy than Ir-based sites, suggesting that Pt serves as the dominant active site in photocatalysis. This study establishes a framework for the rational design of HEA-semiconductor photocatalysts, providing fundamental insights for solar-driven hydrogen production.

摘要

最近,高熵合金(HEA)纳米催化剂已展现出卓越的催化性能。然而,它们与半导体在光催化反应中的整合在很大程度上仍未得到探索。在此,合成了在TiO载体上具有可控组成和晶面的Pd@HEA核壳纳米晶体,实现了显著增强的光催化产氢性能。与Pd@Pt/TiO相比,Pd@PtPdIrRuRh核壳纳米立方体/TiO表现出更优异的光活性,这得益于优化的肖特基结和协同的多金属相互作用,这些作用增强了光催化作用。紫外光电子能谱显示Pd@PtPdIrRuRh的功函数高达4.81 eV,能够实现Pd@HEA与TiO₂之间的高效电荷分离。同时,瞬态吸收光谱证实载流子寿命显著延长至4 ms,远远超过纯TiO₂的(65 μs)。此外,原位X射线光电子能谱证实光致电子优先积累在Ir和Pt位点上,增加了它们的电子密度,并将它们确定为主要吸附位点。此外,密度泛函理论计算进一步表明,基于Pt的桥位比基于Ir的位点表现出更优的氢结合自由能,这表明Pt在光催化中作为主要活性位点。本研究建立了一个合理设计HEA-半导体光催化剂的框架,为太阳能驱动的制氢提供了基础见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abf/12199105/a3fcf967a673/SMLL-21-2503512-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验