Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8561-6. doi: 10.1073/pnas.1218462110. Epub 2013 May 6.
Myosin filaments of muscle are regulated either by phosphorylation of their regulatory light chains or Ca(2+) binding to the essential light chains, contributing to on-off switching or modulation of contraction. Phosphorylation-regulated filaments in the relaxed state are characterized by an asymmetric interaction between the two myosin heads, inhibiting their actin binding or ATPase activity. Here, we have tested whether a similar interaction switches off activity in myosin filaments regulated by Ca(2+) binding. Cryo-electron microscopy and single-particle image reconstruction of Ca(2+)-regulated (scallop) filaments reveals a helical array of myosin head-pair motifs above the filament surface. Docking of atomic models of scallop myosin head domains into the motifs reveals that the heads interact in a similar way to those in phosphorylation-regulated filaments. The results imply that the two major evolutionary branches of myosin regulation--involving phosphorylation or Ca(2+) binding--share a common structural mechanism for switching off thick-filament activity in relaxed muscle. We suggest that the Ca(2+)-binding mechanism evolved from the more ancient phosphorylation-based system to enable rapid response of myosin-regulated muscles to activation. Although the motifs are similar in both systems, the scallop structure is more tilted and higher above the filament backbone, leading to different intermolecular interactions. The reconstruction reveals how the myosin tail emerges from the motif, connecting the heads to the filament backbone, and shows that the backbone is built from supramolecular assemblies of myosin tails. The reconstruction provides a native structural context for understanding past biochemical and biophysical studies of this model Ca(2+)-regulated myosin.
肌肉肌球蛋白丝的调节要么通过其调节轻链的磷酸化,要么通过 Ca(2+) 与必需轻链结合来进行,这有助于开-关切换或收缩的调节。在松弛状态下,磷酸化调节的肌球蛋白丝的特征是两个肌球蛋白头部之间的不对称相互作用,抑制它们与肌动蛋白的结合或 ATP 酶活性。在这里,我们已经测试了 Ca(2+) 结合调节的肌球蛋白丝是否存在类似的相互作用来关闭活性。Ca(2+) 调节的(扇贝壳)肌球蛋白丝的冷冻电子显微镜和单颗粒图像重建揭示了肌球蛋白头对基元在纤维表面上方的螺旋排列。将扇贝壳肌球蛋白头部结构域的原子模型对接入基元中表明,头部以类似于磷酸化调节纤维中的方式相互作用。结果表明,涉及磷酸化或 Ca(2+) 结合的肌球蛋白调节的两个主要进化分支共享一种用于关闭松弛肌肉中厚丝活性的共同结构机制。我们认为,Ca(2+) 结合机制是从更古老的基于磷酸化的系统进化而来的,以使肌球蛋白调节的肌肉能够快速响应激活。尽管这两个系统中的基元相似,但扇贝壳结构更倾斜且高于纤维主干,导致不同的分子间相互作用。重建揭示了肌球蛋白尾部如何从基元中出现,将头部连接到纤维主干,并表明主干是由肌球蛋白尾部的超分子组装构建而成的。重建为理解该模型 Ca(2+) 调节肌球蛋白的过去生化和生物物理研究提供了一个天然的结构背景。