Suppr超能文献

比较基于证据的护理实践研究中手动与自动数据收集方法。

Comparison of manual versus automated data collection method for an evidence-based nursing practice study.

机构信息

Saint Catherine University , Nursing, Saint Paul, Minnesota, United States.

出版信息

Appl Clin Inform. 2013 Feb 13;4(1):61-74. doi: 10.4338/ACI-2012-09-RA-0037. Print 2013.

Abstract

OBJECTIVE

The objective of this study was to investigate and improve the use of automated data collection procedures for nursing research and quality assurance.

METHODS

A descriptive, correlational study analyzed 44 orthopedic surgical patients who were part of an evidence-based practice (EBP) project examining post-operative oxygen therapy at a Midwestern hospital. The automation work attempted to replicate a manually-collected data set from the EBP project.

RESULTS

Automation was successful in replicating data collection for study data elements that were available in the clinical data repository. The automation procedures identified 32 "false negative" patients who met the inclusion criteria described in the EBP project but were not selected during the manual data collection. Automating data collection for certain data elements, such as oxygen saturation, proved challenging because of workflow and practice variations and the reliance on disparate sources for data abstraction. Automation also revealed instances of human error including computational and transcription errors as well as incomplete selection of eligible patients.

CONCLUSION

Automated data collection for analysis of nursing-specific phenomenon is potentially superior to manual data collection methods. Creation of automated reports and analysis may require initial up-front investment with collaboration between clinicians, researchers and information technology specialists who can manage the ambiguities and challenges of research and quality assurance work in healthcare.

摘要

目的

本研究旨在探讨和改进护理研究和质量保证中自动化数据收集程序的使用。

方法

一项描述性、相关性研究分析了 44 名骨科手术患者,他们是中西部医院一项检查术后氧疗的循证实践 (EBP) 项目的一部分。自动化工作试图复制 EBP 项目中手动收集的数据集。

结果

自动化成功复制了可从临床数据存储库获得的研究数据元素的数据收集。自动化程序确定了 32 名“假阴性”患者,他们符合 EBP 项目中描述的纳入标准,但在手动数据收集过程中未被选中。由于工作流程和实践差异以及对数据抽象的不同来源的依赖,自动化某些数据元素(如氧饱和度)的数据收集具有挑战性。自动化还揭示了人为错误的实例,包括计算和转录错误以及对合格患者的不完全选择。

结论

针对护理特定现象进行的自动化数据分析可能优于手动数据收集方法。创建自动化报告和分析可能需要临床医生、研究人员和信息技术专家之间的初始前期投资,他们可以管理医疗保健中研究和质量保证工作的歧义性和挑战。

相似文献

3
Can We Avoid Implant-selection Errors in Total Joint Arthroplasty?全关节置换中能否避免假体选择错误?
Clin Orthop Relat Res. 2019 Jan;477(1):130-133. doi: 10.1097/CORR.0000000000000536.
4
The HANDS project: studying and refining the automated collection of a cross-setting clinical data set.
Comput Inform Nurs. 2002 May-Jun;20(3):89-100. doi: 10.1097/00024665-200205000-00008.

引用本文的文献

1
Characterizing drug-induced stuttering in electronic health records.在电子健康记录中表征药物性口吃。
J Commun Disord. 2025 Jan-Feb;113:106475. doi: 10.1016/j.jcomdis.2024.106475. Epub 2024 Nov 19.

本文引用的文献

5
Innovative use of electronic health record reports by clinical nurse specialists.
Clin Nurse Spec. 2010 Nov-Dec;24(6):289-94. doi: 10.1097/NUR.0b013e3181f8724c.
6
Secondary use of clinical data.临床数据的二次利用。
Stud Health Technol Inform. 2010;155:14-29.
8
Dilemmas, tetralemmas, reimagining the electronic health record.困境、四难推理与电子健康记录的重塑
ANS Adv Nurs Sci. 2009 Jul-Sep;32(3):241-51. doi: 10.1097/ANS.0b013e3181b1056e.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验