Suppr超能文献

[有丝分裂中整合微管解聚与染色体运动的分子机器研究]

[Investigation of molecular machine that integrates microtubules depolymerization and chromosomes movement in mitosis].

作者信息

Volkov V A, Ataullakhanov F I

出版信息

Ross Fiziol Zh Im I M Sechenova. 2013 Feb;99(2):153-65.

Abstract

The main goal of a dividing cell is to distribute its genetic material equally between two daughter cells. Each of the two sister chromatids comprising each chromosome should go into one of the daughter cells. This is possible thanks to polar protein polymers called microtubules, which form a structure called "spindle" during mitosis. Microtubules are one of the basic elements of the cytoskeleton, but at the same time they are highly dynamic. Minus ends of the microtubules attach to the two poles of the spindle, while their plus ends are constantly growing or shrinking, and are also able to attach to the chromosomes and to move them. Chromosomes attach to the microtubule ends with a special protein super-complex called kinetochore. Each sister chromatid in a pair attaches to the microtubules emanating from a corresponding spindle pole. Kinetochores are attached to the dynamic plus ends of the microtubules, but tubulin subunits are still able to attach and detach to these attached ends. One of the most important questions in mitosis is understanding of the mechanism that allows such attachment to be stable (since unstable attachments lead to chromosome loss and aneuploidy) yet dynamic (arrest of the microtubule dynamics stops mitosis). More than 100 proteins comprising the kinetochore are known today, but there is no clear mechanical view on the molecular machine that forms kinetochore-microtubule attachment. The difficulties in understanding this mechanism are due to the variety of theoretical views on the principle of such machine, as well as limited number of biochemically isolated candidates to test these hypotheses experimentally. Therefore, investigation of the properties of putative couplers of microtubule depolymerization and chromosome movement is an important task.

摘要

正在分裂的细胞的主要目标是将其遗传物质平均分配到两个子细胞中。构成每条染色体的两条姐妹染色单体中的每一条都应进入其中一个子细胞。这要归功于一种名为微管的极性蛋白质聚合物,它们在有丝分裂期间形成一种称为“纺锤体”的结构。微管是细胞骨架的基本组成部分之一,但同时它们具有高度的动态性。微管的负极附着在纺锤体的两极,而它们的正极则不断生长或收缩,并且还能够附着在染色体上并移动它们。染色体通过一种名为动粒的特殊蛋白质超复合体附着在微管末端。一对姐妹染色单体中的每一条都附着在从相应纺锤体极发出的微管上。动粒附着在微管的动态正极末端,但微管蛋白亚基仍能够附着和脱离这些附着末端。有丝分裂中最重要的问题之一是理解允许这种附着稳定(因为不稳定的附着会导致染色体丢失和非整倍体)但又具有动态性(微管动态的停滞会阻止有丝分裂)的机制。目前已知有100多种蛋白质构成动粒,但对于形成动粒 - 微管附着的分子机器,尚无清晰的机械学观点。理解这一机制的困难在于对此类机器原理存在多种理论观点,以及用于通过实验检验这些假设的生物化学分离候选物数量有限。因此,研究微管解聚与染色体运动的假定偶联剂的特性是一项重要任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验