Suppr超能文献

合成转录开关中双稳态的集成贝叶斯分析。

Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch.

作者信息

Subsoontorn Pakpoom, Kim Jongmin, Winfree Erik

机构信息

Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

ACS Synth Biol. 2012 Aug 17;1(8):299-316. doi: 10.1021/sb300018h. Epub 2012 Jun 26.

Abstract

An overarching goal of synthetic and systems biology is to engineer and understand complex biochemical systems by rationally designing and analyzing their basic component interactions. Practically, the extent to which such reductionist approaches can be applied is unclear especially as the complexity of the system increases. Toward gradually increasing the complexity of systematically engineered systems, programmable synthetic circuits operating in cell-free in vitro environments offer a valuable testing ground for principles for the design, characterization, and analysis of complex biochemical systems. Here we illustrate this approach using in vitro transcriptional circuits ("genelets") while developing an activatable transcriptional switch motif and configuring it as a bistable autoregulatory circuit, using just four synthetic DNA strands and three essential enzymes, bacteriophage T7 RNA polymerase, Escherichia coli ribonuclease H, and ribonuclease R. Fulfilling the promise of predictable system design, the thermodynamic and kinetic constraints prescribed at the sequence level were enough to experimentally demonstrate intended bistable dynamics for the synthetic autoregulatory switch. A simple mathematical model was constructed based on the mechanistic understanding of elementary reactions, and a Monte Carlo Bayesian inference approach was employed to find parameter sets compatible with a training set of experimental results; this ensemble of parameter sets was then used to predict a test set of additional experiments with reasonable agreement and to provide a rigorous basis for confidence in the mechanistic model. Our work demonstrates that programmable in vitro biochemical circuits can serve as a testing ground for evaluating methods for the design and analysis of more complex biochemical systems such as living cells.

摘要

合成生物学和系统生物学的一个总体目标是通过合理设计和分析其基本组成部分的相互作用来构建和理解复杂的生化系统。实际上,这种还原论方法能够应用的程度尚不清楚,尤其是随着系统复杂性的增加。为了逐步提高系统工程系统的复杂性,在无细胞体外环境中运行的可编程合成电路为复杂生化系统的设计、表征和分析原则提供了一个有价值的试验场。在这里,我们展示了这种方法,使用体外转录电路(“基因小体”),同时开发一种可激活的转录开关基序,并将其配置为双稳态自调节电路,仅使用四条合成DNA链和三种必需酶,即噬菌体T7 RNA聚合酶、大肠杆菌核糖核酸酶H和核糖核酸酶R。为了实现可预测系统设计的前景,在序列水平规定的热力学和动力学约束足以通过实验证明合成自调节开关预期的双稳态动力学。基于对基本反应的机理理解构建了一个简单的数学模型,并采用蒙特卡罗贝叶斯推理方法来寻找与一组实验结果训练集兼容的参数集;然后使用这组参数集来预测一组额外实验的测试集,结果吻合度合理,并为对机理模型的信心提供了严格的依据。我们的工作表明,可编程的体外生化电路可以作为一个试验场,用于评估设计和分析更复杂生化系统(如活细胞)的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验