The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
ACS Nano. 2023 Sep 26;17(18):18266-18279. doi: 10.1021/acsnano.3c05336. Epub 2023 Sep 5.
Emulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits. The second approach involves the application of a reaction module consisting of two transcription templates being activated by a common fuel promoter strand. While one transcription template triggers the transcription of the target RNA, the second transcription template transcribes the anti-fuel strand, displacing the promoter strand associated with the transcription templates, leading to the depletion of the transcription templates and to the dynamic transient modulation of the transcription process. The third strategy involves the assembly of a reaction module consisting of a reaction template triggered by a fuel promoter strand transcribing the target RNA. The concomitant nickase-stimulated depletion of the promoter strand guides the transient modulation of the transcription process. Via integration of two parallel fuel-triggered transcription templates in the three transcription reaction modules and application of template-specific blocker units, the parallel and gated transiently modulated transcription of two different RNA aptamers is demonstrated. The nickase-stimulated transiently modulated transcription reaction module is applied as a functional circuit guiding the dynamic expression of gated, transiently operating, catalytic DNAzymes.
通过合成电路模拟天然瞬时转录机制来调节时间基因表达是系统化学领域的一个主要挑战。本文介绍了三种操作瞬时转录机制和调节靶 RNA 门控转录过程的方法。一种方法涉及设计一个反应模块,该模块由转录模板组成,转录模板由启动子燃料链触发,同时在转录模板中生成功能性 DNA 酶,调节活性模板的耗散消耗和转录电路的瞬时操作。第二种方法涉及应用由两个转录模板组成的反应模块,该模板由共同的燃料启动子链激活。当一个转录模板触发靶 RNA 的转录时,第二个转录模板转录反燃料链,取代与转录模板相关的启动子链,导致转录模板的耗散和转录过程的动态瞬时调节。第三种策略涉及组装由燃料启动子链触发转录靶 RNA 的反应模板组成的反应模块。伴随的尼克酶刺激启动子链的消耗指导转录过程的瞬时调节。通过在三个转录反应模块中整合两个平行的燃料触发转录模板,并应用模板特异性阻断单元,证明了两种不同 RNA 适体的平行和门控瞬时调节转录。将尼克酶刺激的瞬时调节转录反应模块作为一个功能电路,指导门控、瞬时操作、催化 DNA 酶的动态表达。