Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
Mol Microbiol. 2013 Jun;88(6):1176-93. doi: 10.1111/mmi.12250. Epub 2013 May 20.
The ability of a bacterial pathogen to monitor available carbon sources in host tissues provides a clear fitness advantage. In the group A streptococcus (GAS), the virulence regulator Mga contains homology to phosphotransferase system (PTS) regulatory domains (PRDs) found in sugar operon regulators. Here we show that Mga was phosphorylated in vitro by the PTS components EI/HPr at conserved PRD histidines. A ΔptsI (EI-deficient) GAS mutant exhibited decreased Mga activity. However, PTS-mediated phosphorylation inhibited Mga-dependent transcription of emm in vitro. Using alanine (unphosphorylated) and aspartate (phosphomimetic) mutations of PRD histidines, we establish that a doubly phosphorylated PRD1 phosphomimetic (D/DMga4) is completely inactive in vivo, shutting down expression of the Mga regulon. Although D/DMga4 is still able to bind DNA in vitro, homo-multimerization of Mga is disrupted and the protein is unable to activate transcription. PTS-mediated regulation of Mga activity appears to be important for pathogenesis, as bacteria expressing either non-phosphorylated (A/A) or phosphomimetic (D/D) PRD1 Mga mutants were attenuated in a model of GAS invasive skin disease. Thus, PTS-mediated phosphorylation of Mga may allow the bacteria to modulate virulence gene expression in response to carbohydrate status. Furthermore, PRD-containing virulence regulators (PCVRs) appear to be widespread in Gram-positive pathogens.
细菌病原体监测宿主组织中可用碳源的能力为其提供了明显的适应优势。在 A 组链球菌(GAS)中,毒力调节因子 Mga 与糖操纵子调节因子中发现的磷酸转移酶系统(PTS)调节结构域(PRD)具有同源性。在这里,我们表明 Mga 在体外可被 PTS 成分 EI/HPr 磷酸化,在保守的 PRD 组氨酸处。一个 ΔptsI(EI 缺陷)GAS 突变体显示出 Mga 活性降低。然而,PTS 介导的磷酸化抑制了体外 emm 的 Mga 依赖性转录。通过使用 PRD 组氨酸的丙氨酸(非磷酸化)和天冬氨酸(磷酸模拟)突变,我们确定 PRD1 磷酸模拟物(D/DMga4)的双磷酸化完全失活,关闭了 Mga 调控子的表达。尽管 D/DMga4 仍然能够在体外结合 DNA,但 Mga 的同型寡聚化被破坏,并且该蛋白无法激活转录。Mga 活性的 PTS 调节似乎对发病机制很重要,因为表达非磷酸化(A/A)或磷酸模拟(D/D)PRD1 Mga 突变体的细菌在 GAS 侵袭性皮肤疾病模型中减弱。因此,Mga 的 PTS 介导的磷酸化可能使细菌能够根据碳水化合物状态调节毒力基因表达。此外,含有 PRD 的毒力调节因子(PCVR)似乎在革兰氏阳性病原体中广泛存在。