一睹金纳米团簇的超快风采。

An ultrafast look at Au nanoclusters.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Acc Chem Res. 2013 Jul 16;46(7):1506-16. doi: 10.1021/ar300280w. Epub 2013 May 7.

Abstract

In the past 20 years, researchers studying nanomaterials have uncovered many new and interesting properties not found in bulk materials. Extensive research has focused on metal nanoparticles (>3 nm) because of their potential applications, such as in molecular electronics, image markers, and catalysts. In particular, the discovery of metal nanoclusters (<3 nm) has greatly expanded the horizon of nanomaterial research. These nanosystems exhibit molecular-like characteristics as their size approaches the Fermi-wavelength of an electron. The relationships between size and physical properties for nanomaterials are intriguing, because for metal nanosystems in this size regime both size and shape determine electronic properties. Remarkably, changes in the optical properties of nanomaterials have provided tremendous insight into the electronic structure of nanoclusters. The success of synthesizing monolayer protected clusters (MPCs) in the condensed phase has allowed scientists to probe the metal core directly. Au MPCs have become the "gold" standard in nanocluster science, thanks to the rigorous structural characterization already accomplished. The use of ultrafast laser spectroscopy on MPCs in solution provides the benefit of directly studying the chemical dynamics of metal nanoclusters (core), and their nonlinear optical properties. In this Account, we investigate the optical properties of MPCs in the visible region using ultrafast spectroscopy. Based on fluorescence up-conversion spectroscopy, we propose an emission mechanism for these nanoclusters. These clusters behave differently from nanoparticles in terms of emission lifetimes as well as two-photon cross sections. Through further investigation of the transient (excited state) absorption, we have found many unique phenomena of nanoclusters, such as quantum confinement effects and vibrational breathing modes. In summary, based on the differences in the optical properties, the distinction between nanoclusters and nanoparticles appears at a size near 2.2 nm. This is consistent with simulations from a free-electron model proposed for MPCs. The use of ultrafast techniques on these nanoclusters can answer many of the fundamental questions about the nature of these exciting nanomaterials and their applications.

摘要

在过去的 20 年中,研究纳米材料的研究人员发现了许多在块状材料中未发现的新的有趣特性。由于其在分子电子学、图像标记和催化剂等方面的潜在应用,研究人员主要集中在金属纳米粒子(>3nm)上。特别是,金属纳米团簇(<3nm)的发现极大地扩展了纳米材料研究的范围。这些纳米系统在其尺寸接近电子的费米波长时表现出分子样的特性。纳米材料的尺寸和物理性质之间的关系很有趣,因为在这个尺寸范围内的金属纳米系统中,尺寸和形状都决定了电子性质。值得注意的是,纳米材料光学性质的变化为纳米团簇的电子结构提供了巨大的洞察力。在凝聚相中合成单层保护团簇(MPCs)的成功使得科学家能够直接探测金属核心。由于已经完成了严格的结构表征,Au MPC 已成为纳米团簇科学的“金标准”。在溶液中使用超快激光光谱对 MPC 进行研究的好处是可以直接研究金属纳米团簇(核心)的化学动力学及其非线性光学性质。在本报告中,我们使用超快光谱研究 MPC 在可见光区域的光学性质。基于荧光上转换光谱,我们提出了这些纳米团簇的发射机制。这些团簇在发射寿命和双光子截面方面与纳米粒子的行为不同。通过进一步研究瞬态(激发态)吸收,我们发现了纳米团簇的许多独特现象,例如量子限制效应和振动呼吸模式。总之,基于光学性质的差异,纳米团簇和纳米粒子的区别出现在尺寸接近 2.2nm 时。这与针对 MPC 提出的自由电子模型的模拟结果一致。在这些纳米团簇上使用超快技术可以回答许多关于这些令人兴奋的纳米材料的本质及其应用的基本问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索