School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
Ecotoxicol Environ Saf. 2013 Jul;93:60-7. doi: 10.1016/j.ecoenv.2013.03.033. Epub 2013 May 4.
Engineered nanoparticles (NPs), increasingly used in industry, enter and migrate through biological ecosystems. NPs may create some acute toxicity, but their overall effects on living organisms remain largely unknown. In particular, the behavior of NPs in natural conditions and their consequent ecological effects are still poorly understood. In this study, we developed methods to test the phytotoxicity of two distinctly different NPs, one aerosol (nano-TiO2), and the other colloidal silver (AgNP), by specifically considering their tendencies to agglomerate and form precipitates. First we examined effects of these NPs on germination and root elongation. While exposure to neither of these NPs resulted in acute toxicity on germination, silver NPs caused significantly decreased root elongation at every concentration we tested. We found that the hydrodynamic diameters of AgNPs were much smaller than those of nano-TiO2, which induced higher uptake and phytotoxicity. Based on the agglomeration behavior of the NPs, greenhouse trials were run using commercial soil, for nano-TiO2, and Hoagland's solution, for AgNP. Phytotoxicity of silver NPs in the mature plants was demonstrated by lower chlorophyll contents, higher superoxide dismutase activity and less fruit productivity, while nano-TiO2 resulted in higher superoxide dismutase activity at the highest concentration (5000mg/kg). Both nano-TiO2 and AgNPs were taken up into plant stems, leaves and fruits. Our results suggest that further studies of the ecological effects of nanoparticles and steps to mitigate appropriate management strategies are required.
工程纳米粒子(NPs)越来越多地应用于工业领域,进入并迁移到生物生态系统中。NPs 可能会产生一些急性毒性,但它们对生物体的总体影响在很大程度上仍然未知。特别是,NPs 在自然条件下的行为及其对生态系统的影响仍然知之甚少。在这项研究中,我们开发了方法来测试两种截然不同的 NPs 的植物毒性,一种是气溶胶(纳米 TiO2),另一种是胶体银(AgNP),同时特别考虑了它们团聚和形成沉淀物的趋势。首先,我们研究了这些 NPs 对发芽和根伸长的影响。尽管这两种 NPs 都没有在发芽过程中表现出急性毒性,但银 NPs 在我们测试的每个浓度下都导致根伸长显著减少。我们发现 AgNPs 的水动力学直径远小于纳米 TiO2,这导致更高的吸收和植物毒性。根据 NPs 的团聚行为,在温室试验中使用商业土壤(用于纳米 TiO2)和 Hoagland 溶液(用于 AgNP)进行了试验。成熟植物中的银 NPs 表现出较低的叶绿素含量、较高的超氧化物歧化酶活性和较低的果实生产力,而纳米 TiO2 在最高浓度(5000mg/kg)下导致较高的超氧化物歧化酶活性。纳米 TiO2 和 AgNPs 都被植物的茎、叶和果实吸收。我们的结果表明,需要进一步研究纳米颗粒的生态效应,并采取适当的管理策略来减轻其影响。