Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Xiamen 361021, China.
Aquat Toxicol. 2014 Sep;154:168-75. doi: 10.1016/j.aquatox.2014.05.020. Epub 2014 May 27.
Due to their bactericidal and photocatalytic characteristics, silver nanoparticles (Ag NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in the fields of environment and physiology. Once these untreated nanoparticles are released into an aquatic environment and encounter one another, there is more uncertainty about their fate and ecotoxicological risks compared with the single nanoparticles. To expand our knowledge of the health and environmental impacts of nanoparticles, we investigated the possible risk of the co-existence of TiO2 NPs and Ag NPs in an aquatic environment using ciliated protozoa (Tetrahymena pyriformis) as an aquatic animal model. In this study, silver ion (Ag(+)) release and physicochemical properties, as well as their effect on oxidative stress biomarkers, were monitored. Continuous illumination (12,000 lx) led to the 20.0% decrease in Ag(+) release in comparison with dark conditions, while TiO2 NPs and continuous illumination resulted in decreasing the Ag(+) concentration to 64.3% in contrast with Ag NPs-only suspensions. Toxicity tests indicated that different illumination modes exerted distinct effects of TiO2 NPs on the toxicity of Ag NPs: no effects, antagonism and synergism in dark, natural light and continuous light, respectively. In the presence of 1.5mg/L (18.8 μM) TiO2 NPs, the toxicity of 1.5 mg/L (13.9 μM) Ag NPs was reduced by 28.7% and increased by 6.93% in natural light and 12,000 lx of continuous light, respectively. After culturing in 12,000 lx continuous light for 24h, SOD activity of the light control surged to 1.96 times compared to the dark control (P<0.001). TiO2 NPs induced a reduction of CAT activity by an average of (36.1±1.7) % in the light. In the natural light reductions in the toxicity of Ag, NPs decrease Ag(+) concentrations via adsorption of Ag(+) onto TiO2 NPs surfaces. The enhancement of Ag NPs toxicity can contribute to the formation of activated TiO2-Ag NPs complexes in continuous light. The existence of TiO2 NPs in various illumination modes changed the surface chemistry of Ag NPs and then led to different toxicity effects. TiO2 NPs reduce the environmental risks of Ag NPs in natural light, but in continuous light, TiO2 NPs enhance the environmental risks of Ag NPs.
由于银纳米粒子(Ag NPs)和二氧化钛纳米粒子(TiO2 NPs)具有杀菌和光催化特性,因此被广泛应用于环境和生理学领域。一旦这些未经处理的纳米粒子被释放到水生环境中并相互接触,与单一纳米粒子相比,它们的命运和生态毒理学风险就更加不确定。为了扩大我们对纳米颗粒健康和环境影响的认识,我们使用纤毛原生动物(Tetrahymena pyriformis)作为水生动物模型,研究了在水生环境中 TiO2 NPs 和 Ag NPs 共存的可能风险。在这项研究中,监测了银离子(Ag(+))的释放和物理化学性质,以及它们对氧化应激生物标志物的影响。与黑暗条件相比,连续光照(12,000 lx)导致 Ag(+)释放减少了 20.0%,而 TiO2 NPs 和连续光照导致 Ag(+)浓度降低至仅 Ag NPs 悬浮液的 64.3%。毒性测试表明,不同的光照模式对 TiO2 NPs 对 Ag NPs 毒性的影响不同:在黑暗、自然光和连续光条件下,分别表现出无影响、拮抗和协同作用。在 1.5mg/L(18.8 μM)TiO2 NPs 存在的情况下,1.5mg/L(13.9 μM)Ag NPs 的毒性分别在自然光和 12,000 lx 连续光条件下降低了 28.7%和增加了 6.93%。在连续光照 12,000 lx 下培养 24 小时后,与黑暗对照相比,光照对照的 SOD 活性增加到 1.96 倍(P<0.001)。TiO2 NPs 在光照下导致 CAT 活性平均降低(36.1±1.7)%。在自然光下,Ag NPs 的毒性降低是由于 Ag(+)被吸附到 TiO2 NPs 表面而导致 Ag(+)浓度降低。在连续光照下,Ag NPs 毒性的增强可归因于形成活性 TiO2-Ag NPs 复合物。在不同的光照模式下存在 TiO2 NPs 会改变 Ag NPs 的表面化学性质,从而导致不同的毒性效应。TiO2 NPs 在自然光下降低了 Ag NPs 的环境风险,但在连续光照下,TiO2 NPs 增加了 Ag NPs 的环境风险。