Division of Biology, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan.
J Physiol. 2013 Jul 1;591(13):3433-49. doi: 10.1113/jphysiol.2012.247817. Epub 2013 May 7.
Dystonia is characterized by excessive involuntary and prolonged simultaneous contractions of both agonist and antagonist muscles. Although the basal ganglia have long been proposed as the primary region, recent studies indicated that the cerebellum also plays a key role in the expression of dystonia. One hereditary form of dystonia, rapid-onset dystonia with parkinsonism (RDP), is caused by loss of function mutations of the gene for the Na pump α3 subunit (ATP1A3). Little information is available on the affected brain regions and mechanism for dystonia by the mutations in RDP. The Na pump is composed of α and β subunits and maintains ionic gradients of Na(+) and K(+) across the cell membrane. The gradients are utilized for neurotransmitter reuptake and their alteration modulates neural excitability. To provide insight into the molecular aetiology of RDP, we generated and analysed knockout heterozygous mice (Atp1a3(+/-)). Atp1a3(+/-) showed increased symptoms of dystonia that is induced by kainate injection into the cerebellar vermis. Atp1a3 mRNA was highly expressed in Purkinje cells and molecular-layer interneurons, and its product was concentrated at Purkinje cell soma, the site of abundant vesicular γ-aminobutyric acid transporter (VGAT) signal, suggesting the presynaptic localization of the α3 subunit in the inhibitory synapse. Electrophysiological studies showed that the inhibitory neurotransmission at molecular-layer interneuron-Purkinje cell synapses was enhanced in Atp1a3(+/-) cerebellar cortex, and that the enhancement originated via a presynaptic mechanism. Our results shed light on the role of Atp1a3 in the inhibitory synapse, and potential involvement of inhibitory synaptic dysfunction for the pathophysiology of dystonia.
肌张力障碍的特征是过度的不自主和长时间的同时收缩的拮抗剂和激动剂肌肉。虽然基底神经节长期以来一直被提议为主要区域,最近的研究表明小脑也在肌张力障碍的表达中起着关键作用。一种遗传性形式的肌张力障碍,快速发作性肌张力障碍伴帕金森病(RDP),是由钠泵α3 亚基(ATP1A3)的功能丧失突变引起的。关于 RDP 突变引起的肌张力障碍的受影响脑区和机制的信息很少。钠泵由α和β亚基组成,维持细胞膜两侧钠离子(Na+)和钾离子(K+)的离子梯度。梯度被用于神经递质的再摄取,其改变调节神经兴奋性。为了深入了解 RDP 的分子发病机制,我们生成并分析了敲除杂合子小鼠(Atp1a3(+/-))。Atp1a3(+/-)表现出增加的肌张力障碍症状,这是由小脑蚓部注射红藻氨酸引起的。Atp1a3 mRNA 在浦肯野细胞和分子层中间神经元中高度表达,其产物集中在浦肯野细胞体,即丰富囊泡 γ-氨基丁酸转运体(VGAT)信号的部位,提示α3 亚基在抑制性突触中的突触前定位。电生理研究表明,Atp1a3(+/-)小脑皮层中分子层中间神经元-浦肯野细胞突触的抑制性神经传递增强,增强源于突触前机制。我们的研究结果阐明了 Atp1a3 在抑制性突触中的作用,以及抑制性突触功能障碍潜在参与肌张力障碍的病理生理学。