Suppr超能文献

用于 ATP1A3 相关疾病的基因改造动物模型。

Genetically altered animal models for ATP1A3-related disorders.

机构信息

School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.

European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria.

出版信息

Dis Model Mech. 2021 Oct 1;14(10). doi: 10.1242/dmm.048938. Epub 2021 Oct 6.

Abstract

Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.

摘要

在过去的 20 年中,特别是随着外显子组测序技术的出现,编码神经元特异性 Na+,K+-ATP 酶(NKA α3)泵的α3 亚单位的基因(ATP1A3)中的常染色体显性和新生突变已被确定为罕见神经疾病表型连续体的原因。这些 ATP1A3 的等位基因疾病包括(按严重程度/残疾和儿童发育中发病的大致顺序排列):多微小脑回畸形;儿童交替性偏瘫;小脑共济失调、反射消失、高弓足、视神经萎缩和感觉神经性听力损失综合征;复发性脑病伴小脑共济失调;以及快速发作性肌张力障碍-帕金森病。一些患者表现出中间、非典型或混合表型。由于这些疾病目前难以治疗,因此需要更有效的治疗方法。目前对 ATP1A3 突变导致广泛神经症状的分子机制知之甚少。然而,使用遗传改变的模式生物进行的体内比较研究可以深入了解 NKA α3 中致病突变的生物学后果。在此,我们回顾了用于研究 ATP1A3 相关疾病的现有小鼠、斑马鱼、果蝇和秀丽隐杆线虫模型,并讨论了它们对疾病机制理解和新型治疗药物开发的潜在贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27eb/8503543/bd4d855502cc/dmm-14-048938-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验