Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Département de Parasitologie et de Mycologie, F-75015 Paris, France.
J Biol Chem. 2013 Jun 21;288(25):18561-73. doi: 10.1074/jbc.M113.456764. Epub 2013 May 7.
Widespread drug resistance calls for the urgent development of new antimalarials that target novel steps in the life cycle of Plasmodium falciparum and Plasmodium vivax. The essential subtilisin-like serine protease SUB1 of Plasmodium merozoites plays a dual role in egress from and invasion into host erythrocytes. It belongs to a new generation of attractive drug targets against which specific potent inhibitors are actively searched. We characterize here the P. vivax SUB1 enzyme and show that it displays a typical auto-processing pattern and apical localization in P. vivax merozoites. To search for small PvSUB1 inhibitors, we took advantage of the similarity of SUB1 with bacterial subtilisins and generated P. vivax SUB1 three-dimensional models. The structure-based virtual screening of a large commercial chemical compounds library identified 306 virtual best hits, of which 37 were experimentally confirmed inhibitors and 5 had Ki values of <50 μM for PvSUB1. Interestingly, they belong to different chemical families. The most promising competitive inhibitor of PvSUB1 (compound 2) was equally active on PfSUB1 and displayed anti-P. falciparum and Plasmodium berghei activity in vitro and in vivo, respectively. Compound 2 inhibited the endogenous PfSUB1 as illustrated by the inhibited maturation of its natural substrate PfSERA5 and inhibited parasite egress and subsequent erythrocyte invasion. These data indicate that the strategy of in silico screening of three-dimensional models to select for virtual inhibitors combined with stringent biological validation successfully identified several inhibitors of the PvSUB1 enzyme. The most promising hit proved to be a potent cross-inhibitor of PlasmodiumSUB1, laying the groundwork for the development of a globally active small compound antimalarial.
疟原虫广泛耐药,急需开发针对恶性疟原虫和间日疟原虫生命周期中新步骤的新型抗疟药物。疟原虫裂殖子中重要的类枯草杆菌蛋白酶丝氨酸蛋白酶 SUB1 在从宿主红细胞逸出和入侵过程中起双重作用。它属于新一代有吸引力的药物靶点,正在积极寻找针对它的特异性强效抑制剂。我们在这里对 P. vivax SUB1 酶进行了特征描述,并表明它在 P. vivax 裂殖子中显示出典型的自动加工模式和顶端定位。为了寻找小的 PvSUB1 抑制剂,我们利用 SUB1 与细菌枯草杆菌蛋白酶的相似性,生成了 P. vivax SUB1 三维模型。基于结构的虚拟筛选大型商业化学化合物文库,确定了 306 个虚拟最佳命中物,其中 37 个经实验证实为抑制剂,5 个对 PvSUB1 的 Ki 值<50 μM。有趣的是,它们属于不同的化学家族。最有前途的 PvSUB1 竞争性抑制剂(化合物 2)对 PfSUB1 同样有效,在体外和体内分别对 PfSUB1 和 Plasmodium berghei 表现出抗疟原虫活性。化合物 2 抑制内源性 PfSUB1,这表现为其天然底物 PfSERA5 的成熟受到抑制,并抑制寄生虫逸出和随后的红细胞入侵。这些数据表明,通过计算机筛选三维模型来选择虚拟抑制剂的策略与严格的生物学验证相结合,成功地鉴定了几种 PvSUB1 酶抑制剂。最有前途的化合物被证明是 PlasmodiumSUB1 的强效交叉抑制剂,为开发一种全球有效的小分子抗疟药物奠定了基础。