Bilecik Şeyh Edebali University, Turkey.
Comput Math Methods Med. 2013;2013:872676. doi: 10.1155/2013/872676. Epub 2013 Apr 9.
Our aim was to analyze the feasibility of computer aided malignant tumor detection using the traditional texture analysis applied on two-compartment-based parameter pseudoimages of dynamic contrast-enhanced magnetic resonance (DCE-MR) breast image data. A major contribution of this research will be the through-plane assessment capability. Texture analysis was performed on two-compartment-based pseudo images of DCE-MRI datasets of breast data of eight subjects. The resulting texture parameter pseudo images were inputted to a feedforward neural network classification system which uses the manual segmentations of a primary radiologist as a gold standard, and each voxel was assigned as malignant or nonmalignant. The classification results were compared with the lesions manually segmented by a second radiologist. Results show that the mean true positive fraction (TPF) and false positive fraction (FPF) performance of the classifier vs. primary radiologist is statistically as good as the mean TPF and FPF performance of the second radiologist vs. primary radiologist with a confidence interval of 95% using a one-sample t-test with α = 0.05. In the experiment implemented on all of the eight subjects, all malignant tumors marked by the primary radiologist were classified to be malignant by the computer classifier. Our results have shown that neural network classification using the textural parameters for automated screening of two-compartment-based parameter pseudo images of DCE-MRI as input data can be a supportive tool for the radiologists in the preassessment stage to show the possible cancerous regions and in the postassessment stage to review the segmentations especially in analyzing complex DCE-MRI cases.
我们的目的是分析使用传统的纹理分析在基于双室的动态对比增强磁共振(DCE-MR)乳腺图像数据的参数伪影上检测恶性肿瘤的可行性。这项研究的一个主要贡献将是贯穿平面评估能力。对 8 例受试者的 DCE-MRI 数据集的双室基于伪影的乳腺数据进行了纹理分析。将得到的纹理参数伪影输入到前馈神经网络分类系统中,该系统使用初级放射科医生的手动分割作为金标准,将每个体素分配为恶性或非恶性。将分类结果与第二位放射科医生手动分割的病变进行比较。结果表明,与初级放射科医生相比,分类器的平均真阳性分数(TPF)和假阳性分数(FPF)性能与第二位放射科医生与初级放射科医生相比的平均 TPF 和 FPF 性能具有统计学意义,置信区间为 95%使用单侧 t 检验,α = 0.05。在对所有 8 名受试者进行的实验中,计算机分类器将初级放射科医生标记的所有恶性肿瘤均分类为恶性。我们的结果表明,使用纹理参数对基于双室的 DCE-MRI 参数伪影进行神经网络分类作为输入数据,可以成为放射科医生在预评估阶段显示可能的癌症区域的辅助工具,以及在评估阶段审查分割的工具,特别是在分析复杂的 DCE-MRI 病例时。