Archer Eric J, Robinson Andra B, Süel Gürol M
The University of Texas Southwestern Medical Center, Dallas, TX, USA.
ACS Synth Biol. 2012 Oct 19;1(10):451-7. doi: 10.1021/sb3000595. Epub 2012 Aug 21.
Advances in synthetic biology now allow for the reprogramming of microorganisms to execute specific tasks. Here, we describe the development of an engineered strain of E. coli capable of sensing and responding to the presence of a mammalian inflammatory signal. The synthetic gene regulatory circuit is designed to permanently alter gene expression in response to the well characterized inflammatory signal nitric oxide. The detection of nitric oxide initiates the expression of a DNA recombinase, causing the permanent activation of a DNA switch. We demonstrate that E. coli containing this synthetic circuit respond to nitric oxide from both chemical and biological sources, with permanent DNA recombination occurring in the presence of nitric oxide donor compounds or inflamed mouse ileum explants. In the future, this synthetic genetic circuit will be optimized to allow E. coli to reliably detect and respond to inflammation in vivo.
合成生物学的进展如今使得对微生物进行重新编程以执行特定任务成为可能。在此,我们描述了一种工程化大肠杆菌菌株的开发,该菌株能够感知并响应哺乳动物炎症信号的存在。合成基因调控回路被设计为可根据已充分表征的炎症信号一氧化氮永久改变基因表达。一氧化氮的检测启动DNA重组酶的表达,导致DNA开关的永久激活。我们证明,含有这种合成回路的大肠杆菌对来自化学和生物源的一氧化氮均有反应,在一氧化氮供体化合物或发炎的小鼠回肠外植体存在的情况下会发生永久性DNA重组。未来,这种合成遗传回路将得到优化,以使大肠杆菌能够在体内可靠地检测和响应炎症。