Zhang Xinyu, Feng Zhijie, Li Hongxiang, Yang Haoyan, Li Lianyue, Zhang Chao, Dai Pengxiu, Wang Hanxin, Xue Huimin, Wang Yaxin, Sun Dawei, Liu Xinyu, Li Mingshan, Lu Shenjunjie, Liu Jing, Du Taofeng, Liu Duo, Wang Hanjie
School of Life Sciences, Faculty of Medicine, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin, China.
State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China.
Nat Microbiol. 2025 Aug;10(8):1841-1853. doi: 10.1038/s41564-025-02057-w. Epub 2025 Jul 28.
Engineered microbes can be used for biomolecular sensing and therapeutic interventions. However, they cannot be monitored and controlled while in vivo. Here we combine optogenetically engineered Escherichia coli Nissle 1917, an ingestible optoelectronic capsule and a wireless smartphone to establish a bidirectional biological-optical-electronic signal processing chain for diagnostic or therapeutic capabilities under user control. As a proof of concept, we engineered E. coli Nissle 1917 to detect inflammation-associated nitric oxide in the pig gut and generate a bioluminescent signal for diagnosis of colitis. This signal is transduced by the optoelectronic capsule into a wireless electrical signal and remotely monitored by a smartphone. Smartphone wireless signals activate LED irradiation in the optoelectronic capsule, in turn activating the microbial expression and secretion of an anti-inflammatory nanobody to alleviate colitis in pigs. This approach highlights the potential for integrating synthetic biology and optoelectronics for digital health monitoring and controllable intervention.
工程微生物可用于生物分子传感和治疗干预。然而,它们在体内时无法被监测和控制。在此,我们将经过光遗传学工程改造的大肠杆菌Nissle 1917、一种可摄入的光电胶囊和一部无线智能手机相结合,建立了一个双向生物 - 光学 - 电子信号处理链,用于在用户控制下实现诊断或治疗功能。作为概念验证,我们对大肠杆菌Nissle 1917进行工程改造,以检测猪肠道中与炎症相关的一氧化氮,并产生生物发光信号用于结肠炎的诊断。该信号由光电胶囊转换为无线电信号,并由智能手机进行远程监测。智能手机的无线信号激活光电胶囊中的LED照射,进而激活抗炎纳米抗体的微生物表达和分泌,以减轻猪的结肠炎。这种方法凸显了整合合成生物学和光电子学用于数字健康监测和可控干预的潜力。