Department of Physics, Bharathiar University, Coimbatore 641 046, India.
J Phys Chem A. 2013 Jun 6;117(22):4611-26. doi: 10.1021/jp3120868. Epub 2013 May 22.
Dimethylphenols are highly reactive in the atmosphere, and their oxidation plays a vital role in the autoignition and combustion processes. The dominant oxidation process for dimethylphenols is by gas-phase reaction with OH radical. In the present study, the reaction of OH radical with dimethylphenol isomers is studied using density functional theory methods, B3LYP, M06-2X, and MPW1K, and also at the MP2 level of theory using 6-31G(d,p) and 6-31+G(d,p) basis sets. The activation energy values have also been calculated using the CCSD(T) method with 6-31G(d,p) and 6-311+G(d,p) basis sets using the geometries optimized at the M06-2X/6-31G(d,p) level of theory. The reactions subsequent to the principal oxidation steps are studied, and the different reaction pathways are modeled. The positions of the OH and CH3 substituents in the aromatic ring have a great influence on the reactivity of dimethylphenol toward OH radical. Accordingly, the reaction is initiated in four different ways: H-atom abstraction from the phenol group, H-atom abstraction from a methyl group, H-atom abstraction from the aromatic ring by OH radical, or electrophilic addition of OH radical to the aromatic ring. Aromatic peroxy radicals arising from initial H-atom abstraction and subsequent O2 addition lead to the formation of hydroperoxide adducts and alkoxy radicals. The O2 additions to dimethylphenol-OH adduct results in the formation of epoxide and bicyclic radicals. The rate constants for the most favorable reaction pathways are calculated using canonical variational transition state theory with small curvature tunneling corrections. This study provides thermochemical and kinetic data for the oxidation of dimethylphenol in the atmosphere and demonstrates the mechanism for the conversion of peroxy radical into aldehydes, hydroperoxides, epoxides, and bicyclic radicals, and their lifetimes in the atmosphere.
二甲基苯酚在大气中具有很高的反应活性,其氧化过程在自动点火和燃烧过程中起着至关重要的作用。二甲基苯酚的主要氧化过程是通过气相与 OH 自由基反应。在本研究中,使用密度泛函理论方法(B3LYP、M06-2X 和 MPW1K)以及 MP2 理论水平,使用 6-31G(d,p) 和 6-31+G(d,p) 基组,研究了 OH 自由基与二甲基苯酚异构体的反应。还使用 CCSD(T)方法,使用 6-31G(d,p) 和 6-311+G(d,p) 基组,在 M06-2X/6-31G(d,p)理论水平优化的几何形状上,计算了活化能值。研究了主要氧化步骤后的反应,建立了不同的反应途径模型。芳香环上 OH 和 CH3 取代基的位置对二甲基苯酚与 OH 自由基的反应性有很大影响。因此,反应以四种不同的方式引发:从苯酚基团中提取 H 原子、从甲基中提取 H 原子、OH 自由基从芳环中提取 H 原子,或 OH 自由基对芳环的亲电加成。初始 H 原子提取和随后的 O2 加成产生的芳香过氧自由基导致过氧氢化物加合物和烷氧基自由基的形成。O2 对二甲基苯酚-OH 加合物的加成导致环氧化物和双环自由基的形成。使用正则变分过渡态理论和小曲率隧道校正计算最有利反应途径的速率常数。本研究提供了二甲基苯酚在大气中氧化的热化学和动力学数据,并证明了过氧自由基转化为醛、过氧化物、环氧化物和双环自由基及其在大气中的寿命的机制。