Suppr超能文献

GIGANTEA 的作用:在开花和耐盐胁迫之间保持平衡。

A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance.

机构信息

Division of Applied Life Science (BK21 Program); Plant Molecular Biology and Biotechnology Research Center; Graduate School of Gyeongsang National University; Jinju, South Korea.

出版信息

Plant Signal Behav. 2013 Jul;8(7):e24820. doi: 10.4161/psb.24820. Epub 2013 May 3.

Abstract

The initiation of flowering in Arabidopsis is retarded or abolished by environmental stresses. Focusing on salt stress, we provide a molecular explanation for this well-known fact. A protein complex consisting of GI, a clock component important for flowering and SOS2, a kinase activating the [Na(+)] antiporter SOS1, exists under no stress conditions. GI prevents SOS2 from activating SOS1. In the presence of NaCl, the SOS2/GI complex disintegrates and GI is degraded. SO2, together with the Ca (2+)-activated sensor of sodium ions, SOS3, activates SOS1. In gi mutants, SOS1 is constitutively activated and gi plants are more highly salt tolerant than wild type Arabidopsis. The model shows GI as a transitory regulator of SOS pathway activity whose presence or amount connects flowering to environmental conditions.

摘要

在拟南芥中,开花的启动会被环境胁迫所延迟或阻断。聚焦于盐胁迫,我们为这个广为人知的现象提供了分子水平上的解释。在无胁迫条件下,存在一个由 GI、一个对开花很重要的生物钟组分以及 SOS2、一个激活 [Na(+)] 反向转运蛋白 SOS1 的激酶组成的蛋白复合体。GI 阻止 SOS2 激活 SOS1。在有 NaCl 的情况下,SOS2/GI 复合体解体,GI 被降解。SOS2 与钙离子激活的钠离子感受器 SOS3 一起激活 SOS1。在 gi 突变体中,SOS1 持续激活,gi 植株比野生型拟南芥更能耐受盐胁迫。该模型将 GI 作为 SOS 途径活性的瞬时调节剂,其存在或数量将开花与环境条件联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c468/3908941/1782b2047efc/psb-8-e24820-g1.jpg

相似文献

1
A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance.
Plant Signal Behav. 2013 Jul;8(7):e24820. doi: 10.4161/psb.24820. Epub 2013 May 3.
3
The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance.
J Exp Bot. 2020 Mar 25;71(6):1801-1814. doi: 10.1093/jxb/erz549.
4
Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9061-6. doi: 10.1073/pnas.132092099. Epub 2002 Jun 17.
6
7
ESCRT-I Component VPS23A Sustains Salt Tolerance by Strengthening the SOS Module in Arabidopsis.
Mol Plant. 2020 Aug 3;13(8):1134-1148. doi: 10.1016/j.molp.2020.05.010. Epub 2020 May 18.
8
Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8436-41. doi: 10.1073/pnas.122224699. Epub 2002 May 28.
9
The Na/H antiporter SALT OVERLY SENSITIVE 1 regulates salt compensation of circadian rhythms by stabilizing GIGANTEA in .
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2207275119. doi: 10.1073/pnas.2207275119. Epub 2022 Aug 8.
10
Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in .
Int J Mol Sci. 2019 May 16;20(10):2421. doi: 10.3390/ijms20102421.

引用本文的文献

2
The role of WRKY transcription factors in exogenous potassium (K) response to NaCl stress in .
Front Genet. 2023 Nov 20;14:1274288. doi: 10.3389/fgene.2023.1274288. eCollection 2023.
3
The Circadian Clock Coordinates the Tradeoff between Adaptation to Abiotic Stresses and Yield in Crops.
Biology (Basel). 2023 Oct 24;12(11):1364. doi: 10.3390/biology12111364.
4
Cyclic guanosine monophosphate improves salt tolerance in Solanum lycopersicum.
J Plant Res. 2024 Jan;137(1):111-124. doi: 10.1007/s10265-023-01487-z. Epub 2023 Aug 23.
5
The Salt Tolerance-Related Protein (STRP) Is a Positive Regulator of the Response to Salt Stress in .
Plants (Basel). 2023 Apr 20;12(8):1704. doi: 10.3390/plants12081704.
6
Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants.
Int J Mol Sci. 2023 Feb 23;24(5):4426. doi: 10.3390/ijms24054426.
7
Physiological and Transcriptional Responses of to Salt Stress at the Seed Germination Stage.
Int J Mol Sci. 2023 Feb 11;24(4):3623. doi: 10.3390/ijms24043623.
8
The role of corepressor HOS15-mediated epigenetic regulation of flowering.
Front Plant Sci. 2023 Jan 10;13:1101912. doi: 10.3389/fpls.2022.1101912. eCollection 2022.
10
Molecular basis of heading date control in rice.
aBIOTECH. 2020 May 11;1(4):219-232. doi: 10.1007/s42994-020-00019-w. eCollection 2020 Oct.

本文引用的文献

1
SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response.
Plant Physiol. 2011 Dec;157(4):1900-13. doi: 10.1104/pp.111.187302. Epub 2011 Oct 19.
2
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5104-9. doi: 10.1073/pnas.1015452108. Epub 2011 Mar 7.
4
FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis.
Science. 2007 Oct 12;318(5848):261-5. doi: 10.1126/science.1146994. Epub 2007 Sep 13.
5
ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light.
Nature. 2007 Sep 20;449(7160):356-60. doi: 10.1038/nature06132. Epub 2007 Aug 19.
6
Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice.
J Exp Bot. 2007;58(12):3091-7. doi: 10.1093/jxb/erm159. Epub 2007 Aug 9.
7
COMPARATIVE RESPONSES OF LONG-DAY AND SHORT-DAY PLANTS TO RELATIVE LENGTH OF DAY AND NIGHT.
Plant Physiol. 1933 Jul;8(3):347-56. doi: 10.1104/pp.8.3.347.
8
Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark.
FEBS Lett. 2006 Feb 20;580(5):1193-7. doi: 10.1016/j.febslet.2006.01.016. Epub 2006 Jan 18.
9
Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis.
Plant Cell Rep. 2005 Dec;24(11):683-90. doi: 10.1007/s00299-005-0061-x. Epub 2005 Oct 18.
10
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.
Science. 2005 Jul 22;309(5734):630-3. doi: 10.1126/science.1115581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验