Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
Phys Med Biol. 2013 Jun 7;58(11):3739-53. doi: 10.1088/0031-9155/58/11/3739. Epub 2013 May 8.
A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm(2) position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as (18)F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for (18)F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm(-2) at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of (18)F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm(-2) for 1 min acquisitions and a 62 × 62 µm(2) pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm(2). We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ∼180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ∼200 µm of additional LDPE film. Lastly, we demonstrate the practical utilization of Betabox, with an imaging test of its linearity, when coupled to a polydimethylsiloxane microfluidic chip designed for cell based assays.
已经开发出一种β相机,该相机使用 14×14mm(2) 位置灵敏雪崩光电二极管(PSAPD)允许对β粒子的时空分布进行平面成像。我们将这种相机系统称为 Betabox,它可以直接与专为细胞孵育或其他生物应用设计的微流控芯片耦合。Betabox 可以对这些芯片内用带电粒子发射体(例如(18)F)标记的分子成像探针的细胞摄取进行成像。在这项工作中,我们根据背景率、效率、空间分辨率和计数率来研究 Betabox 对(18)Fβ粒子的定量成像能力。在室温(21°C ± 1°C)和升高的工作温度(37°C ± 1°C)下都考虑了背景和空间分辨率的测量,因为这对于生物测定通常是必需的。在 21 和 37°C 下,使用 4keV 能量截止测量的背景率均低于 2 cph mm(-2)。当 PSAPD 的表面受到来自环境光和损坏的保护时,Betabox 对与 PSAPD 接触的(18)F 正电子源的绝对效率为 46%±1%。使用 Rose 准则估计的下限检测值为 0.2cps mm(-2),采集时间为 1min,像素尺寸为 62×62µm(2)。上限检测值约为 21000cps。在 21 和 37°C 下,空间分辨率在视场(FOV)中心处为 0.4mm FWHM,在距中心 5mm 处降至 1mm,产生约 10×10mm(2) 的有用 FOV。我们还研究了使用聚合物基微流控芯片对空间分辨率和灵敏度的影响。对于这些研究,我们在探测器和源之间放置了不同厚度的低密度聚乙烯(LDPE)层,并发现空间分辨率每增加 100µm 的 LDPE 膜就会降低约 180µm。包含约 200µm 额外 LDPE 膜会使灵敏度降低一半。最后,我们通过将其与专为细胞分析设计的聚二甲基硅氧烷微流控芯片耦合,演示了 Betabox 的实际应用,包括对其线性度的成像测试。