Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA.
Nucleic Acids Res. 2013 Jul;41(13):6421-9. doi: 10.1093/nar/gkt360. Epub 2013 May 8.
Recent studies showed that Ten-eleven translocation (Tet) family dioxygenases can oxidize 5-methyl-2'-deoxycytidine (5-mdC) in DNA to yield the 5-hydroxymethyl, 5-formyl and 5-carboxyl derivatives of 2'-deoxycytidine (5-HmdC, 5-FodC and 5-CadC). 5-HmdC in DNA may be enzymatically deaminated to yield 5-hydroxymethyl-2'-deoxyuridine (5-HmdU). After their formation at CpG dinucleotide sites, these oxidized pyrimidine nucleosides, particularly 5-FodC, 5-CadC, and 5-HmdU, may be cleaved from DNA by thymine DNA glycosylase, and subsequent action of base-excision repair machinery restores unmethylated cytosine. These processes are proposed to be important in active DNA cytosine demethylation in mammals. Here we used a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS/MS) method, along with the use of stable isotope-labeled standards, for accurate measurements of 5-HmdC, 5-FodC, 5-CadC and 5-HmdU in genomic DNA of cultured human cells and multiple mammalian tissues. We found that overexpression of the catalytic domain of human Tet1 led to marked increases in the levels of 5-HmdC, 5-FodC and 5-CadC, but only a modest increase in 5-HmdU, in genomic DNA of HEK293T cells. Moreover, 5-HmdC is present at a level that is approximately 2-3 and 3-4 orders of magnitude greater than 5-FodC and 5-CadC, respectively, and 35-400 times greater than 5-HmdU in the mouse brain and skin, and human brain. The robust analytical method built a solid foundation for dissecting the molecular mechanisms of active cytosine demethylation, for measuring these 5-mdC derivatives and assessing their involvement in epigenetic regulation in other organisms and for examining whether these 5-mdC derivatives can be used as biomarkers for human diseases.
最近的研究表明,Ten-eleven 易位(Tet)家族双加氧酶可以氧化 DNA 中的 5-甲基-2'-脱氧胞苷(5-mdC),生成 2'-脱氧胞苷的 5-羟甲基、5-甲酰基和 5-羧基衍生物(5-HmdC、5-FodC 和 5-CadC)。DNA 中的 5-HmdC 可能被酶促脱氨生成 5-羟甲基-2'-脱氧尿嘧啶(5-HmdU)。在 CpG 二核苷酸位点形成后,这些氧化的嘧啶核苷,特别是 5-FodC、5-CadC 和 5-HmdU,可能被胸腺嘧啶 DNA 糖基化酶从 DNA 中切割,随后碱基切除修复机制恢复未甲基化的胞嘧啶。这些过程被认为在哺乳动物中活跃的 DNA 胞嘧啶去甲基化中很重要。在这里,我们使用反相高效液相色谱法(HPLC)与串联质谱法(MS/MS/MS)联用,并使用稳定同位素标记的标准品,准确测量了培养的人细胞和多种哺乳动物组织基因组 DNA 中的 5-HmdC、5-FodC、5-CadC 和 5-HmdU。我们发现,人 Tet1 催化结构域的过表达导致 HEK293T 细胞基因组 DNA 中 5-HmdC、5-FodC 和 5-CadC 的水平显著增加,但 5-HmdU 仅略有增加。此外,在小鼠大脑和皮肤以及人脑中,5-HmdC 的水平分别比 5-FodC 和 5-CadC 高 2-3 个和 3-4 个数量级,比 5-HmdU 高 35-400 倍。强大的分析方法为剖析活跃的胞嘧啶去甲基化的分子机制奠定了基础,可用于测量这些 5-mdC 衍生物,并评估它们在其他生物体中的表观遗传调控中的作用,以及研究这些 5-mdC 衍生物是否可以用作人类疾病的生物标志物。