Division of Biological Sciences, Section of Neurobiology, University of California San Diego, La Jolla, California, United States of America.
PLoS Genet. 2013 May;9(5):e1003472. doi: 10.1371/journal.pgen.1003472. Epub 2013 May 2.
Neuropeptides play crucial roles in modulating neuronal networks, including changing intrinsic properties of neurons and synaptic efficacy. We previously reported a Caenorhabditis elegans mutant, acr-2(gf), that displays spontaneous convulsions as the result of a gain-of-function mutation in a neuronal nicotinic acetylcholine receptor subunit. The ACR-2 channel is expressed in the cholinergic motor neurons, and acr-2(gf) causes cholinergic overexcitation accompanied by reduced GABAergic inhibition in the locomotor circuit. Here we show that neuropeptides play a homeostatic role that compensates for this excitation-inhibition imbalance in the locomotor circuit. Loss of function in genes required for neuropeptide processing or release of dense core vesicles specifically modulate the convulsion frequency of acr-2(gf). The proprotein convertase EGL-3 is required in the cholinergic motor neurons to restrain convulsions. Electrophysiological recordings of neuromuscular junctions show that loss of egl-3 in acr-2(gf) causes a further reduction of GABAergic inhibition. We identify two neuropeptide encoding genes, flp-1 and flp-18, that together counteract the excitation-inhibition imbalance in acr-2(gf) mutants. We further find that acr-2(gf) causes an increased expression of flp-18 in the ventral cord cholinergic motor neurons and that overexpression of flp-18 reduces the convulsion of acr-2(gf) mutants. The effects of these peptides are in part mediated by two G-protein coupled receptors, NPR-1 and NPR-5. Our data suggest that the chronic overexcitation of the cholinergic motor neurons imposed by acr-2(gf) leads to an increased production of FMRFamide neuropeptides, which act to decrease the activity level of the locomotor circuit, thereby homeostatically modulating the excitation and inhibition imbalance.
神经肽在调节神经元网络方面发挥着至关重要的作用,包括改变神经元的内在特性和突触效能。我们之前报道了一个秀丽隐杆线虫的突变体 acr-2(gf),它由于神经元烟碱型乙酰胆碱受体亚基的功能获得性突变而表现出自发性惊厥。ACR-2 通道在胆碱能运动神经元中表达,acr-2(gf)导致胆碱能过度兴奋,同时运动回路中的 GABA 能抑制减弱。在这里,我们表明神经肽起着一种稳态作用,可补偿运动回路中这种兴奋-抑制失衡。神经肽加工或致密核心囊泡释放所需基因的功能丧失会特异性调节 acr-2(gf)的惊厥频率。前蛋白转化酶 EGL-3 在胆碱能运动神经元中是必需的,以抑制惊厥。肌神经接点的电生理记录显示,在 acr-2(gf)中缺失 egl-3 会导致 GABA 能抑制进一步减弱。我们鉴定了两个神经肽编码基因 flp-1 和 flp-18,它们共同拮抗 acr-2(gf)突变体中的兴奋-抑制失衡。我们进一步发现,acr-2(gf)导致腹索胆碱能运动神经元中 flp-18 的表达增加,而过表达 flp-18 可减少 acr-2(gf)突变体的惊厥。这些肽的作用部分是通过两个 G 蛋白偶联受体 NPR-1 和 NPR-5 介导的。我们的数据表明,acr-2(gf)引起的胆碱能运动神经元的慢性过度兴奋导致 FMRFamide 神经肽的产生增加,这会降低运动回路的活动水平,从而对兴奋和抑制失衡进行稳态调节。