Suppr超能文献

通过保守的秀丽隐杆线虫糖蛋白激素受体FSHR-1进行的细胞非自主信号传导调节胆碱能神经传递。

Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission.

作者信息

Buckley Morgan, Jacob William P, Bortey Letitia, McClain Makenzi E, Ritter Alyssa L, Godfrey Amy, Munneke Allyson S, Ramachandran Shankar, Kenis Signe, Kolnik Julie C, Olofsson Sarah, Nenadovich Milica, Kutoloski Tanner, Rademacher Lillian, Alva Alexandra, Heinecke Olivia, Adkins Ryan, Parkar Shums, Bhagat Reesha, Lunato Jaelin, Beets Isabel, Francis Michael M, Kowalski Jennifer R

机构信息

Department of Biological Sciences, Butler University, Indianapolis, Indiana, United States of America.

Department of Neurobiology, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, United States of America.

出版信息

PLoS Genet. 2024 Nov 19;20(11):e1011461. doi: 10.1371/journal.pgen.1011461. eCollection 2024 Nov.

Abstract

Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1-deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1/GαS, acy-1/adenylyl cyclase and sphk-1/sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for intestinal FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.

摘要

神经传递的调节对于生物体应对各种生理环境(如感染、损伤或其他应激期间)以及学习、记忆和感觉适应过程至关重要。细胞自主神经调节机制在这些过程中的作用已得到充分描述。细胞非自主途径在组织间信号传导(如肠-脑或胶质细胞-神经元信号传导)中的重要性最近才被发现,但介导这种调节的细胞机制仍相对未被探索。糖蛋白及其G蛋白偶联受体(GPCR)是多组织信号事件的既定协调者,它们通过细胞自主和细胞非自主调节来控制各种生理过程。在这里,我们表明促卵泡激素受体FSHR-1是哺乳动物糖蛋白激素GPCR在秀丽隐杆线虫中的唯一直系同源物,对突触传递的细胞非自主调节很重要。抑制fshr-1表达会减少肌肉收缩,并导致胆碱能运动神经元中突触小泡的积累。fshr-1功能丧失突变体中的神经肌肉和运动缺陷与突触小泡的潜在积累、突触小泡引发因子UNC-10/RIM的积累以及胆碱能运动神经元中突触小泡释放的减少有关。将FSHR-1恢复到肠道足以恢复fshr-1缺陷动物的神经肌肉活动和突触小泡定位。肠道特异性敲低FSHR-1会降低神经肌肉功能,表明FSHR-1在肠道中对其神经肌肉作用既必要又充分。在包括胶质细胞和神经元在内的内源性表达的其他位点重新表达FSHR-1也恢复了一些神经肌肉缺陷,表明这些组织也可能存在跨组织调节。遗传相互作用研究提供了证据,表明下游效应器gsa-1/GαS、acy-1/腺苷酸环化酶和sphk-1/鞘氨醇激酶以及糖蛋白激素亚基直系同源物GPLA-1/GPA2和GPLB-1/GPB5对肠道FSHR-1对神经肌肉接头的调节很重要。总之,我们的结果表明FSHR-1调节指导组织间信号系统,促进神经肌肉突触处的突触小泡释放。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3361/11614273/cb13e8ebfacd/pgen.1011461.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验