Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL, 34987, USA.
Chem Biol Drug Des. 2013 Oct;82(4):367-75. doi: 10.1111/cbdd.12162. Epub 2013 Sep 10.
The concept of a recurrent scaffold present in a series of structures is common in medicinal drug discovery. We present a scaffold analysis of compounds screened across 100 sequence-unrelated proteins to identify scaffolds that drive promiscuity or selectivity. Selectivity and promiscuity play a major role in traditional and poly-pharmacological drug design considerations. The collection employed here is the first publicly available data set containing the complete screening profiles of more than 15 000 compounds from different sources. In addition, no scaffold analysis of this data set has been reported. The protocol described here employs the Molecular Equivalence Index tool to facilitate the selection of Bemis-Murcko frameworks in the data set, which contain at least five compounds and Scaffold Hunter to generate a hierarchical tree of scaffolds. The annotation of the scaffold tree with protein-binding profile data enabled the successful identification of mostly highly specific compounds, due to data set constraints. We also applied this approach to a public set of 1497 small molecules screened non-uniformly across a panel of 172 protein kinases. The approach is general and can be applied to any other data sets and activity readout.
在一系列结构中存在反复出现的支架的概念在药物发现中很常见。我们对经过 100 个序列无关的蛋白质筛选的化合物进行了支架分析,以确定驱动混杂性或选择性的支架。选择性和混杂性在传统和多药理学药物设计考虑中起着重要作用。这里使用的数据集是第一个公开可用的数据集,其中包含来自不同来源的超过 15000 种化合物的完整筛选概况。此外,尚未报道对此数据集的支架分析。这里描述的方案采用分子等效指数工具来促进数据集中介电常数框架的选择,其中包含至少五个化合物,并且支架猎人生成支架的层次树。由于数据集的限制,对支架树进行蛋白质结合谱数据的注释成功地鉴定了大多数高特异性化合物。我们还将这种方法应用于一组 1497 种小分子,这些小分子不均匀地筛选了 172 种蛋白激酶。该方法具有通用性,可以应用于任何其他数据集和活性读数。