El Khattabi Ilham, Sharma Arun
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
Mol Endocrinol. 2013 Jul;27(7):1078-90. doi: 10.1210/me.2012-1346. Epub 2013 May 9.
The reduction in the expression of glucose-responsive insulin gene transcription factor MafA accompanies the development of β-cell dysfunction under oxidative stress/diabetic milieu. Humans with type 2 diabetes have reduced MafA expression, and thus preventing this reduction could overcome β-cell dysfunction and diabetes. We previously showed that p38 MAPK, but not glycogen synthase kinase 3 (GSK3), is a major regulator of MafA degradation under oxidative stress. Here, we examined the mechanisms of this degradation and whether preventing MafA degradation under oxidative stress will overcome β-cell dysfunction. We show that under oxidative and nonoxidative conditions p38 MAPK directly binds to MafA and triggers MafA degradation via ubiquitin proteasomal pathway. However, unlike nonoxidative conditions, MafA degradation under oxidative stress depended on p38 MAPK-mediated phosphorylation at threonine (T) 134, and not T57. Furthermore the expression of alanine (A) 134-MafA, but not A57-MafA, reduced the oxidative stress-mediated loss of glucose-stimulated insulin secretion, which was independent of p38 MAPK action on protein kinase D, a regulator of insulin secretion. Interestingly, the expression of proteasomal activator PA28γ that degrades GSK3-phosphorylated (including T57) MafA was reduced under oxidative stress, explaining the dominance of p38 MAPK over the GSK3 pathway in regulating MafA stability under oxidative stress. These results identify two distinct pathways mediating p38 MAPK-dependent MafA degradation under oxidative and nonoxidative conditions and show that inhibiting MafA degradation under oxidative stress ameliorates β-cell dysfunction and could lead to novel therapies for diabetes.
在氧化应激/糖尿病环境下,葡萄糖反应性胰岛素基因转录因子MafA表达的降低伴随着β细胞功能障碍的发展。2型糖尿病患者的MafA表达降低,因此防止这种降低可能克服β细胞功能障碍和糖尿病。我们之前表明,在氧化应激下,p38丝裂原活化蛋白激酶(p38 MAPK)而非糖原合酶激酶3(GSK3)是MafA降解的主要调节因子。在此,我们研究了这种降解的机制,以及在氧化应激下防止MafA降解是否会克服β细胞功能障碍。我们发现,在氧化和非氧化条件下,p38 MAPK直接与MafA结合,并通过泛素蛋白酶体途径触发MafA降解。然而,与非氧化条件不同,氧化应激下MafA的降解依赖于p38 MAPK介导的苏氨酸(T)134而非T57的磷酸化。此外,丙氨酸(A)134-MafA而非A57-MafA的表达减少了氧化应激介导的葡萄糖刺激的胰岛素分泌损失,这与p38 MAPK对胰岛素分泌调节因子蛋白激酶D的作用无关。有趣的是,在氧化应激下,降解GSK3磷酸化(包括T57)的MafA的蛋白酶体激活剂PA28γ的表达降低,这解释了在氧化应激下p38 MAPK在调节MafA稳定性方面相对于GSK3途径的主导地位。这些结果确定了在氧化和非氧化条件下介导p38 MAPK依赖性MafA降解的两条不同途径,并表明在氧化应激下抑制MafA降解可改善β细胞功能障碍,并可能导致糖尿病的新疗法。