Suppr超能文献

从脑地形图到脑拓扑学:图论与功能神经科学的相关性

From brain topography to brain topology: relevance of graph theory to functional neuroscience.

作者信息

Minati Ludovico, Varotto Giulia, D'Incerti Ludovico, Panzica Ferruccio, Chan Dennis

机构信息

Department of Neurology, Brighton & Sussex Medical School (BSMS), Clinical Imaging Science Centre (CISC), University of Sussex, Falmer, UK.

出版信息

Neuroreport. 2013 Jul 10;24(10):536-43. doi: 10.1097/WNR.0b013e3283621234.

Abstract

Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.

摘要

尽管多个脑区表现出显著的功能特化,但诸如跨模态信息整合、抽象推理和意识觉知等高阶功能被认为是由分布式功能网络之间的相互作用产生的。因此,能够捕捉此类网络特性的分析方法可以增强我们从功能磁共振成像、脑电图和脑磁图数据中进行推断的能力。图论是数学的一个分支,专注于网络的形式化建模,并提供了广泛的理论工具来量化网络架构(拓扑结构)的特定特征,这些特征可以提供补充信息,以补充对给定刺激或任务做出反应的区域的解剖定位(地形学)。此外,对轴突连接架构和区域间相互作用的明确建模可以揭示在不同生物网络中保守且对疾病状态高度敏感的特殊拓扑特性。该领域正在迅速发展,部分得益于计算技术的进步,这些技术能够在精细的解剖细节上研究连接性以及多个区域之间的同时相互作用。该领域最近的出版物表明,基于图的建模可以增强我们从功能磁共振成像实验中得出因果推断的能力,并支持在神经退行性疾病,特别是阿尔茨海默病中早期检测连接中断和病理传播建模。此外,神经生理学研究表明,网络拓扑与癫痫发生有着深刻的联系,并且从图模型得出的连接性指标有助于对癫痫发作的起始和传播进行建模。因此,基于图的分析可能会极大地有助于理解一系列神经疾病的基础。本综述旨在主要为普通神经科学家和临床医生提供基于图的脑连接性分析及其与疾病相关性的概述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验