Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
Am J Epidemiol. 2013 Aug 15;178(4):508-20. doi: 10.1093/aje/kwt017. Epub 2013 May 9.
Antibiotic-resistant infections complicate treatment and increase morbidity and mortality. Mathematical modeling has played an integral role in improving our understanding of antibiotic resistance. In these models, parameter sensitivity is often assessed, while model structure sensitivity is not. To examine the implications of this, we first reviewed the literature on antibiotic-resistance modeling published between 1993 and 2011. We then classified each article's model structure into one or more of 6 categories based on the assumptions made in those articles regarding within-host and population-level competition between antibiotic-sensitive and antibiotic-resistant strains. Each model category has different dynamic implications with respect to how antibiotic use affects resistance prevalence, and therefore each may produce different conclusions about optimal treatment protocols that minimize resistance. Thus, even if all parameter values are correctly estimated, inferences may be incorrect because of the incorrect selection of model structure. Our framework provides insight into model selection.
抗生素耐药感染使治疗复杂化,并增加发病率和死亡率。数学建模在提高对抗生素耐药性的认识方面发挥了重要作用。在这些模型中,通常会评估参数敏感性,而不会评估模型结构敏感性。为了研究这一问题的影响,我们首先回顾了 1993 年至 2011 年间发表的关于抗生素耐药建模的文献。然后,我们根据这些文章中关于宿主内和人群中抗生素敏感株和抗生素耐药株之间竞争的假设,将每篇文章的模型结构分为一个或多个 6 类。每个模型类别在抗生素使用如何影响耐药流行方面具有不同的动态影响,因此,每个模型类别可能会产生关于最佳治疗方案的不同结论,这些方案可以最大限度地减少耐药性。因此,即使所有参数值都得到正确估计,由于模型结构选择错误,推断也可能不正确。我们的框架提供了对模型选择的深入了解。